![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dprdw | Structured version Visualization version GIF version |
Description: The property of being a finitely supported function in the family 𝑆. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) |
Ref | Expression |
---|---|
dprdff.w | ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } |
dprdff.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
dprdff.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
Ref | Expression |
---|---|
dprdw | ⊢ (𝜑 → (𝐹 ∈ 𝑊 ↔ (𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥) ∧ 𝐹 finSupp 0 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3364 | . . . . 5 ⊢ (𝐹 ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) → 𝐹 ∈ V) | |
2 | 1 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) → 𝐹 ∈ V)) |
3 | dprdff.1 | . . . . . . 7 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
4 | dprdff.2 | . . . . . . 7 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
5 | 3, 4 | dprddomcld 18608 | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ V) |
6 | fnex 6625 | . . . . . . 7 ⊢ ((𝐹 Fn 𝐼 ∧ 𝐼 ∈ V) → 𝐹 ∈ V) | |
7 | 6 | expcom 398 | . . . . . 6 ⊢ (𝐼 ∈ V → (𝐹 Fn 𝐼 → 𝐹 ∈ V)) |
8 | 5, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐹 Fn 𝐼 → 𝐹 ∈ V)) |
9 | 8 | adantrd 479 | . . . 4 ⊢ (𝜑 → ((𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥)) → 𝐹 ∈ V)) |
10 | fveq2 6332 | . . . . . . . . 9 ⊢ (𝑖 = 𝑥 → (𝑆‘𝑖) = (𝑆‘𝑥)) | |
11 | 10 | cbvixpv 8080 | . . . . . . . 8 ⊢ X𝑖 ∈ 𝐼 (𝑆‘𝑖) = X𝑥 ∈ 𝐼 (𝑆‘𝑥) |
12 | 11 | eleq2i 2842 | . . . . . . 7 ⊢ (𝐹 ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ↔ 𝐹 ∈ X𝑥 ∈ 𝐼 (𝑆‘𝑥)) |
13 | elixp2 8066 | . . . . . . 7 ⊢ (𝐹 ∈ X𝑥 ∈ 𝐼 (𝑆‘𝑥) ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥))) | |
14 | 3anass 1080 | . . . . . . 7 ⊢ ((𝐹 ∈ V ∧ 𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥)) ↔ (𝐹 ∈ V ∧ (𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥)))) | |
15 | 12, 13, 14 | 3bitri 286 | . . . . . 6 ⊢ (𝐹 ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ↔ (𝐹 ∈ V ∧ (𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥)))) |
16 | 15 | baib 525 | . . . . 5 ⊢ (𝐹 ∈ V → (𝐹 ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ↔ (𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥)))) |
17 | 16 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ V → (𝐹 ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ↔ (𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥))))) |
18 | 2, 9, 17 | pm5.21ndd 368 | . . 3 ⊢ (𝜑 → (𝐹 ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ↔ (𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥)))) |
19 | 18 | anbi1d 615 | . 2 ⊢ (𝜑 → ((𝐹 ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∧ 𝐹 finSupp 0 ) ↔ ((𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥)) ∧ 𝐹 finSupp 0 ))) |
20 | breq1 4789 | . . 3 ⊢ (ℎ = 𝐹 → (ℎ finSupp 0 ↔ 𝐹 finSupp 0 )) | |
21 | dprdff.w | . . 3 ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } | |
22 | 20, 21 | elrab2 3518 | . 2 ⊢ (𝐹 ∈ 𝑊 ↔ (𝐹 ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∧ 𝐹 finSupp 0 )) |
23 | df-3an 1073 | . 2 ⊢ ((𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥) ∧ 𝐹 finSupp 0 ) ↔ ((𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥)) ∧ 𝐹 finSupp 0 )) | |
24 | 19, 22, 23 | 3bitr4g 303 | 1 ⊢ (𝜑 → (𝐹 ∈ 𝑊 ↔ (𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥) ∧ 𝐹 finSupp 0 ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 ∀wral 3061 {crab 3065 Vcvv 3351 class class class wbr 4786 dom cdm 5249 Fn wfn 6026 ‘cfv 6031 Xcixp 8062 finSupp cfsupp 8431 DProd cdprd 18600 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pr 5034 ax-un 7096 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-oprab 6797 df-mpt2 6798 df-ixp 8063 df-dprd 18602 |
This theorem is referenced by: dprdff 18619 dprdfcl 18620 dprdffsupp 18621 dprdsubg 18631 |
Copyright terms: Public domain | W3C validator |