MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdval0prc Structured version   Visualization version   GIF version

Theorem dprdval0prc 18622
Description: The internal direct product of a family of subgroups indexed by a proper class is empty. (Contributed by AV, 13-Jul-2019.)
Assertion
Ref Expression
dprdval0prc (dom 𝑆 ∉ V → (𝐺 DProd 𝑆) = ∅)

Proof of Theorem dprdval0prc
StepHypRef Expression
1 df-nel 3037 . . 3 (dom 𝑆 ∉ V ↔ ¬ dom 𝑆 ∈ V)
2 dmexg 7264 . . . 4 (𝑆 ∈ V → dom 𝑆 ∈ V)
32con3i 150 . . 3 (¬ dom 𝑆 ∈ V → ¬ 𝑆 ∈ V)
41, 3sylbi 207 . 2 (dom 𝑆 ∉ V → ¬ 𝑆 ∈ V)
5 reldmdprd 18617 . . 3 Rel dom DProd
65ovprc2 6850 . 2 𝑆 ∈ V → (𝐺 DProd 𝑆) = ∅)
74, 6syl 17 1 (dom 𝑆 ∉ V → (𝐺 DProd 𝑆) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1632  wcel 2140  wnel 3036  Vcvv 3341  c0 4059  dom cdm 5267  (class class class)co 6815   DProd cdprd 18613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-nel 3037  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3343  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-nul 4060  df-if 4232  df-sn 4323  df-pr 4325  df-op 4329  df-uni 4590  df-br 4806  df-opab 4866  df-xp 5273  df-rel 5274  df-cnv 5275  df-dm 5277  df-rn 5278  df-iota 6013  df-fv 6058  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-dprd 18615
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator