![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dprdval0prc | Structured version Visualization version GIF version |
Description: The internal direct product of a family of subgroups indexed by a proper class is empty. (Contributed by AV, 13-Jul-2019.) |
Ref | Expression |
---|---|
dprdval0prc | ⊢ (dom 𝑆 ∉ V → (𝐺 DProd 𝑆) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nel 3037 | . . 3 ⊢ (dom 𝑆 ∉ V ↔ ¬ dom 𝑆 ∈ V) | |
2 | dmexg 7264 | . . . 4 ⊢ (𝑆 ∈ V → dom 𝑆 ∈ V) | |
3 | 2 | con3i 150 | . . 3 ⊢ (¬ dom 𝑆 ∈ V → ¬ 𝑆 ∈ V) |
4 | 1, 3 | sylbi 207 | . 2 ⊢ (dom 𝑆 ∉ V → ¬ 𝑆 ∈ V) |
5 | reldmdprd 18617 | . . 3 ⊢ Rel dom DProd | |
6 | 5 | ovprc2 6850 | . 2 ⊢ (¬ 𝑆 ∈ V → (𝐺 DProd 𝑆) = ∅) |
7 | 4, 6 | syl 17 | 1 ⊢ (dom 𝑆 ∉ V → (𝐺 DProd 𝑆) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1632 ∈ wcel 2140 ∉ wnel 3036 Vcvv 3341 ∅c0 4059 dom cdm 5267 (class class class)co 6815 DProd cdprd 18613 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-nel 3037 df-ral 3056 df-rex 3057 df-rab 3060 df-v 3343 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-sn 4323 df-pr 4325 df-op 4329 df-uni 4590 df-br 4806 df-opab 4866 df-xp 5273 df-rel 5274 df-cnv 5275 df-dm 5277 df-rn 5278 df-iota 6013 df-fv 6058 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-dprd 18615 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |