MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdss Structured version   Visualization version   GIF version

Theorem dprdss 18628
Description: Create a direct product by finding subgroups inside each factor of another direct product. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
dprdss.1 (𝜑𝐺dom DProd 𝑇)
dprdss.2 (𝜑 → dom 𝑇 = 𝐼)
dprdss.3 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
dprdss.4 ((𝜑𝑘𝐼) → (𝑆𝑘) ⊆ (𝑇𝑘))
Assertion
Ref Expression
dprdss (𝜑 → (𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) ⊆ (𝐺 DProd 𝑇)))
Distinct variable groups:   𝑘,𝐺   𝜑,𝑘   𝑆,𝑘   𝑇,𝑘   𝑘,𝐼

Proof of Theorem dprdss
Dummy variables 𝑓 𝑎 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2760 . . 3 (Cntz‘𝐺) = (Cntz‘𝐺)
2 eqid 2760 . . 3 (0g𝐺) = (0g𝐺)
3 eqid 2760 . . 3 (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺))
4 dprdss.1 . . . 4 (𝜑𝐺dom DProd 𝑇)
5 dprdgrp 18604 . . . 4 (𝐺dom DProd 𝑇𝐺 ∈ Grp)
64, 5syl 17 . . 3 (𝜑𝐺 ∈ Grp)
7 dprdss.2 . . . 4 (𝜑 → dom 𝑇 = 𝐼)
84, 7dprddomcld 18600 . . 3 (𝜑𝐼 ∈ V)
9 dprdss.3 . . 3 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
10 dprdss.4 . . . . . . 7 ((𝜑𝑘𝐼) → (𝑆𝑘) ⊆ (𝑇𝑘))
1110ralrimiva 3104 . . . . . 6 (𝜑 → ∀𝑘𝐼 (𝑆𝑘) ⊆ (𝑇𝑘))
12 fveq2 6352 . . . . . . . 8 (𝑘 = 𝑥 → (𝑆𝑘) = (𝑆𝑥))
13 fveq2 6352 . . . . . . . 8 (𝑘 = 𝑥 → (𝑇𝑘) = (𝑇𝑥))
1412, 13sseq12d 3775 . . . . . . 7 (𝑘 = 𝑥 → ((𝑆𝑘) ⊆ (𝑇𝑘) ↔ (𝑆𝑥) ⊆ (𝑇𝑥)))
1514rspcv 3445 . . . . . 6 (𝑥𝐼 → (∀𝑘𝐼 (𝑆𝑘) ⊆ (𝑇𝑘) → (𝑆𝑥) ⊆ (𝑇𝑥)))
1611, 15mpan9 487 . . . . 5 ((𝜑𝑥𝐼) → (𝑆𝑥) ⊆ (𝑇𝑥))
17163ad2antr1 1204 . . . 4 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → (𝑆𝑥) ⊆ (𝑇𝑥))
184adantr 472 . . . . . 6 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → 𝐺dom DProd 𝑇)
197adantr 472 . . . . . 6 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → dom 𝑇 = 𝐼)
20 simpr1 1234 . . . . . 6 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → 𝑥𝐼)
21 simpr2 1236 . . . . . 6 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → 𝑦𝐼)
22 simpr3 1238 . . . . . 6 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → 𝑥𝑦)
2318, 19, 20, 21, 22, 1dprdcntz 18607 . . . . 5 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → (𝑇𝑥) ⊆ ((Cntz‘𝐺)‘(𝑇𝑦)))
244, 7dprdf2 18606 . . . . . . . . 9 (𝜑𝑇:𝐼⟶(SubGrp‘𝐺))
2524adantr 472 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → 𝑇:𝐼⟶(SubGrp‘𝐺))
2625, 21ffvelrnd 6523 . . . . . . 7 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → (𝑇𝑦) ∈ (SubGrp‘𝐺))
27 eqid 2760 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
2827subgss 17796 . . . . . . 7 ((𝑇𝑦) ∈ (SubGrp‘𝐺) → (𝑇𝑦) ⊆ (Base‘𝐺))
2926, 28syl 17 . . . . . 6 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → (𝑇𝑦) ⊆ (Base‘𝐺))
30 fveq2 6352 . . . . . . . 8 (𝑘 = 𝑦 → (𝑆𝑘) = (𝑆𝑦))
31 fveq2 6352 . . . . . . . 8 (𝑘 = 𝑦 → (𝑇𝑘) = (𝑇𝑦))
3230, 31sseq12d 3775 . . . . . . 7 (𝑘 = 𝑦 → ((𝑆𝑘) ⊆ (𝑇𝑘) ↔ (𝑆𝑦) ⊆ (𝑇𝑦)))
3311adantr 472 . . . . . . 7 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → ∀𝑘𝐼 (𝑆𝑘) ⊆ (𝑇𝑘))
3432, 33, 21rspcdva 3455 . . . . . 6 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → (𝑆𝑦) ⊆ (𝑇𝑦))
3527, 1cntz2ss 17965 . . . . . 6 (((𝑇𝑦) ⊆ (Base‘𝐺) ∧ (𝑆𝑦) ⊆ (𝑇𝑦)) → ((Cntz‘𝐺)‘(𝑇𝑦)) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)))
3629, 34, 35syl2anc 696 . . . . 5 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → ((Cntz‘𝐺)‘(𝑇𝑦)) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)))
3723, 36sstrd 3754 . . . 4 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → (𝑇𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)))
3817, 37sstrd 3754 . . 3 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → (𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)))
396adantr 472 . . . . . . 7 ((𝜑𝑥𝐼) → 𝐺 ∈ Grp)
4027subgacs 17830 . . . . . . 7 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)))
41 acsmre 16514 . . . . . . 7 ((SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
4239, 40, 413syl 18 . . . . . 6 ((𝜑𝑥𝐼) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
43 difss 3880 . . . . . . . . 9 (𝐼 ∖ {𝑥}) ⊆ 𝐼
4411adantr 472 . . . . . . . . 9 ((𝜑𝑥𝐼) → ∀𝑘𝐼 (𝑆𝑘) ⊆ (𝑇𝑘))
45 ssralv 3807 . . . . . . . . 9 ((𝐼 ∖ {𝑥}) ⊆ 𝐼 → (∀𝑘𝐼 (𝑆𝑘) ⊆ (𝑇𝑘) → ∀𝑘 ∈ (𝐼 ∖ {𝑥})(𝑆𝑘) ⊆ (𝑇𝑘)))
4643, 44, 45mpsyl 68 . . . . . . . 8 ((𝜑𝑥𝐼) → ∀𝑘 ∈ (𝐼 ∖ {𝑥})(𝑆𝑘) ⊆ (𝑇𝑘))
47 ss2iun 4688 . . . . . . . 8 (∀𝑘 ∈ (𝐼 ∖ {𝑥})(𝑆𝑘) ⊆ (𝑇𝑘) → 𝑘 ∈ (𝐼 ∖ {𝑥})(𝑆𝑘) ⊆ 𝑘 ∈ (𝐼 ∖ {𝑥})(𝑇𝑘))
4846, 47syl 17 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑘 ∈ (𝐼 ∖ {𝑥})(𝑆𝑘) ⊆ 𝑘 ∈ (𝐼 ∖ {𝑥})(𝑇𝑘))
499adantr 472 . . . . . . . 8 ((𝜑𝑥𝐼) → 𝑆:𝐼⟶(SubGrp‘𝐺))
50 ffun 6209 . . . . . . . 8 (𝑆:𝐼⟶(SubGrp‘𝐺) → Fun 𝑆)
51 funiunfv 6669 . . . . . . . 8 (Fun 𝑆 𝑘 ∈ (𝐼 ∖ {𝑥})(𝑆𝑘) = (𝑆 “ (𝐼 ∖ {𝑥})))
5249, 50, 513syl 18 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑘 ∈ (𝐼 ∖ {𝑥})(𝑆𝑘) = (𝑆 “ (𝐼 ∖ {𝑥})))
5324adantr 472 . . . . . . . 8 ((𝜑𝑥𝐼) → 𝑇:𝐼⟶(SubGrp‘𝐺))
54 ffun 6209 . . . . . . . 8 (𝑇:𝐼⟶(SubGrp‘𝐺) → Fun 𝑇)
55 funiunfv 6669 . . . . . . . 8 (Fun 𝑇 𝑘 ∈ (𝐼 ∖ {𝑥})(𝑇𝑘) = (𝑇 “ (𝐼 ∖ {𝑥})))
5653, 54, 553syl 18 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑘 ∈ (𝐼 ∖ {𝑥})(𝑇𝑘) = (𝑇 “ (𝐼 ∖ {𝑥})))
5748, 52, 563sstr3d 3788 . . . . . 6 ((𝜑𝑥𝐼) → (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ (𝑇 “ (𝐼 ∖ {𝑥})))
58 imassrn 5635 . . . . . . . 8 (𝑇 “ (𝐼 ∖ {𝑥})) ⊆ ran 𝑇
59 frn 6214 . . . . . . . . . 10 (𝑇:𝐼⟶(SubGrp‘𝐺) → ran 𝑇 ⊆ (SubGrp‘𝐺))
6053, 59syl 17 . . . . . . . . 9 ((𝜑𝑥𝐼) → ran 𝑇 ⊆ (SubGrp‘𝐺))
61 mresspw 16454 . . . . . . . . . 10 ((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺))
6242, 61syl 17 . . . . . . . . 9 ((𝜑𝑥𝐼) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺))
6360, 62sstrd 3754 . . . . . . . 8 ((𝜑𝑥𝐼) → ran 𝑇 ⊆ 𝒫 (Base‘𝐺))
6458, 63syl5ss 3755 . . . . . . 7 ((𝜑𝑥𝐼) → (𝑇 “ (𝐼 ∖ {𝑥})) ⊆ 𝒫 (Base‘𝐺))
65 sspwuni 4763 . . . . . . 7 ((𝑇 “ (𝐼 ∖ {𝑥})) ⊆ 𝒫 (Base‘𝐺) ↔ (𝑇 “ (𝐼 ∖ {𝑥})) ⊆ (Base‘𝐺))
6664, 65sylib 208 . . . . . 6 ((𝜑𝑥𝐼) → (𝑇 “ (𝐼 ∖ {𝑥})) ⊆ (Base‘𝐺))
6742, 3, 57, 66mrcssd 16486 . . . . 5 ((𝜑𝑥𝐼) → ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))) ⊆ ((mrCls‘(SubGrp‘𝐺))‘ (𝑇 “ (𝐼 ∖ {𝑥}))))
68 ss2in 3983 . . . . 5 (((𝑆𝑥) ⊆ (𝑇𝑥) ∧ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))) ⊆ ((mrCls‘(SubGrp‘𝐺))‘ (𝑇 “ (𝐼 ∖ {𝑥})))) → ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ ((𝑇𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑇 “ (𝐼 ∖ {𝑥})))))
6916, 67, 68syl2anc 696 . . . 4 ((𝜑𝑥𝐼) → ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ ((𝑇𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑇 “ (𝐼 ∖ {𝑥})))))
704adantr 472 . . . . 5 ((𝜑𝑥𝐼) → 𝐺dom DProd 𝑇)
717adantr 472 . . . . 5 ((𝜑𝑥𝐼) → dom 𝑇 = 𝐼)
72 simpr 479 . . . . 5 ((𝜑𝑥𝐼) → 𝑥𝐼)
7370, 71, 72, 2, 3dprddisj 18608 . . . 4 ((𝜑𝑥𝐼) → ((𝑇𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑇 “ (𝐼 ∖ {𝑥})))) = {(0g𝐺)})
7469, 73sseqtrd 3782 . . 3 ((𝜑𝑥𝐼) → ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ {(0g𝐺)})
751, 2, 3, 6, 8, 9, 38, 74dmdprdd 18598 . 2 (𝜑𝐺dom DProd 𝑆)
764a1d 25 . . . . 5 (𝜑 → (𝐺dom DProd 𝑆𝐺dom DProd 𝑇))
77 ss2ixp 8087 . . . . . . 7 (∀𝑘𝐼 (𝑆𝑘) ⊆ (𝑇𝑘) → X𝑘𝐼 (𝑆𝑘) ⊆ X𝑘𝐼 (𝑇𝑘))
7811, 77syl 17 . . . . . 6 (𝜑X𝑘𝐼 (𝑆𝑘) ⊆ X𝑘𝐼 (𝑇𝑘))
79 rabss2 3826 . . . . . 6 (X𝑘𝐼 (𝑆𝑘) ⊆ X𝑘𝐼 (𝑇𝑘) → {X𝑘𝐼 (𝑆𝑘) ∣ finSupp (0g𝐺)} ⊆ {X𝑘𝐼 (𝑇𝑘) ∣ finSupp (0g𝐺)})
80 ssrexv 3808 . . . . . 6 ({X𝑘𝐼 (𝑆𝑘) ∣ finSupp (0g𝐺)} ⊆ {X𝑘𝐼 (𝑇𝑘) ∣ finSupp (0g𝐺)} → (∃𝑓 ∈ {X𝑘𝐼 (𝑆𝑘) ∣ finSupp (0g𝐺)}𝑎 = (𝐺 Σg 𝑓) → ∃𝑓 ∈ {X𝑘𝐼 (𝑇𝑘) ∣ finSupp (0g𝐺)}𝑎 = (𝐺 Σg 𝑓)))
8178, 79, 803syl 18 . . . . 5 (𝜑 → (∃𝑓 ∈ {X𝑘𝐼 (𝑆𝑘) ∣ finSupp (0g𝐺)}𝑎 = (𝐺 Σg 𝑓) → ∃𝑓 ∈ {X𝑘𝐼 (𝑇𝑘) ∣ finSupp (0g𝐺)}𝑎 = (𝐺 Σg 𝑓)))
8276, 81anim12d 587 . . . 4 (𝜑 → ((𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ {X𝑘𝐼 (𝑆𝑘) ∣ finSupp (0g𝐺)}𝑎 = (𝐺 Σg 𝑓)) → (𝐺dom DProd 𝑇 ∧ ∃𝑓 ∈ {X𝑘𝐼 (𝑇𝑘) ∣ finSupp (0g𝐺)}𝑎 = (𝐺 Σg 𝑓))))
83 fdm 6212 . . . . 5 (𝑆:𝐼⟶(SubGrp‘𝐺) → dom 𝑆 = 𝐼)
84 eqid 2760 . . . . . 6 {X𝑘𝐼 (𝑆𝑘) ∣ finSupp (0g𝐺)} = {X𝑘𝐼 (𝑆𝑘) ∣ finSupp (0g𝐺)}
852, 84eldprd 18603 . . . . 5 (dom 𝑆 = 𝐼 → (𝑎 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ {X𝑘𝐼 (𝑆𝑘) ∣ finSupp (0g𝐺)}𝑎 = (𝐺 Σg 𝑓))))
869, 83, 853syl 18 . . . 4 (𝜑 → (𝑎 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ {X𝑘𝐼 (𝑆𝑘) ∣ finSupp (0g𝐺)}𝑎 = (𝐺 Σg 𝑓))))
87 eqid 2760 . . . . . 6 {X𝑘𝐼 (𝑇𝑘) ∣ finSupp (0g𝐺)} = {X𝑘𝐼 (𝑇𝑘) ∣ finSupp (0g𝐺)}
882, 87eldprd 18603 . . . . 5 (dom 𝑇 = 𝐼 → (𝑎 ∈ (𝐺 DProd 𝑇) ↔ (𝐺dom DProd 𝑇 ∧ ∃𝑓 ∈ {X𝑘𝐼 (𝑇𝑘) ∣ finSupp (0g𝐺)}𝑎 = (𝐺 Σg 𝑓))))
897, 88syl 17 . . . 4 (𝜑 → (𝑎 ∈ (𝐺 DProd 𝑇) ↔ (𝐺dom DProd 𝑇 ∧ ∃𝑓 ∈ {X𝑘𝐼 (𝑇𝑘) ∣ finSupp (0g𝐺)}𝑎 = (𝐺 Σg 𝑓))))
9082, 86, 893imtr4d 283 . . 3 (𝜑 → (𝑎 ∈ (𝐺 DProd 𝑆) → 𝑎 ∈ (𝐺 DProd 𝑇)))
9190ssrdv 3750 . 2 (𝜑 → (𝐺 DProd 𝑆) ⊆ (𝐺 DProd 𝑇))
9275, 91jca 555 1 (𝜑 → (𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) ⊆ (𝐺 DProd 𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wne 2932  wral 3050  wrex 3051  {crab 3054  Vcvv 3340  cdif 3712  cin 3714  wss 3715  𝒫 cpw 4302  {csn 4321   cuni 4588   ciun 4672   class class class wbr 4804  dom cdm 5266  ran crn 5267  cima 5269  Fun wfun 6043  wf 6045  cfv 6049  (class class class)co 6813  Xcixp 8074   finSupp cfsupp 8440  Basecbs 16059  0gc0g 16302   Σg cgsu 16303  Moorecmre 16444  mrClscmrc 16445  ACScacs 16447  Grpcgrp 17623  SubGrpcsubg 17789  Cntzccntz 17948   DProd cdprd 18592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-ixp 8075  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-2 11271  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-0g 16304  df-mre 16448  df-mrc 16449  df-acs 16451  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-submnd 17537  df-grp 17626  df-minusg 17627  df-subg 17792  df-cntz 17950  df-dprd 18594
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator