Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdsplit Structured version   Visualization version   GIF version

Theorem dprdsplit 18647
 Description: The direct product is the binary subgroup product ("sum") of the direct products of the partition. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
dprdsplit.2 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
dprdsplit.i (𝜑 → (𝐶𝐷) = ∅)
dprdsplit.u (𝜑𝐼 = (𝐶𝐷))
dprdsplit.s = (LSSum‘𝐺)
dprdsplit.1 (𝜑𝐺dom DProd 𝑆)
Assertion
Ref Expression
dprdsplit (𝜑 → (𝐺 DProd 𝑆) = ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))))

Proof of Theorem dprdsplit
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dprdsplit.1 . . 3 (𝜑𝐺dom DProd 𝑆)
2 dprdsplit.2 . . . 4 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
3 fdm 6212 . . . 4 (𝑆:𝐼⟶(SubGrp‘𝐺) → dom 𝑆 = 𝐼)
42, 3syl 17 . . 3 (𝜑 → dom 𝑆 = 𝐼)
5 ssun1 3919 . . . . . . . 8 𝐶 ⊆ (𝐶𝐷)
6 dprdsplit.u . . . . . . . 8 (𝜑𝐼 = (𝐶𝐷))
75, 6syl5sseqr 3795 . . . . . . 7 (𝜑𝐶𝐼)
81, 4, 7dprdres 18627 . . . . . 6 (𝜑 → (𝐺dom DProd (𝑆𝐶) ∧ (𝐺 DProd (𝑆𝐶)) ⊆ (𝐺 DProd 𝑆)))
98simpld 477 . . . . 5 (𝜑𝐺dom DProd (𝑆𝐶))
10 dprdsubg 18623 . . . . 5 (𝐺dom DProd (𝑆𝐶) → (𝐺 DProd (𝑆𝐶)) ∈ (SubGrp‘𝐺))
119, 10syl 17 . . . 4 (𝜑 → (𝐺 DProd (𝑆𝐶)) ∈ (SubGrp‘𝐺))
12 ssun2 3920 . . . . . . . 8 𝐷 ⊆ (𝐶𝐷)
1312, 6syl5sseqr 3795 . . . . . . 7 (𝜑𝐷𝐼)
141, 4, 13dprdres 18627 . . . . . 6 (𝜑 → (𝐺dom DProd (𝑆𝐷) ∧ (𝐺 DProd (𝑆𝐷)) ⊆ (𝐺 DProd 𝑆)))
1514simpld 477 . . . . 5 (𝜑𝐺dom DProd (𝑆𝐷))
16 dprdsubg 18623 . . . . 5 (𝐺dom DProd (𝑆𝐷) → (𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺))
1715, 16syl 17 . . . 4 (𝜑 → (𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺))
18 dprdsplit.i . . . . . . 7 (𝜑 → (𝐶𝐷) = ∅)
19 eqid 2760 . . . . . . 7 (Cntz‘𝐺) = (Cntz‘𝐺)
20 eqid 2760 . . . . . . 7 (0g𝐺) = (0g𝐺)
212, 18, 6, 19, 20dmdprdsplit 18646 . . . . . 6 (𝜑 → (𝐺dom DProd 𝑆 ↔ ((𝐺dom DProd (𝑆𝐶) ∧ 𝐺dom DProd (𝑆𝐷)) ∧ (𝐺 DProd (𝑆𝐶)) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd (𝑆𝐷))) ∧ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) = {(0g𝐺)})))
221, 21mpbid 222 . . . . 5 (𝜑 → ((𝐺dom DProd (𝑆𝐶) ∧ 𝐺dom DProd (𝑆𝐷)) ∧ (𝐺 DProd (𝑆𝐶)) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd (𝑆𝐷))) ∧ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) = {(0g𝐺)}))
2322simp2d 1138 . . . 4 (𝜑 → (𝐺 DProd (𝑆𝐶)) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd (𝑆𝐷))))
24 dprdsplit.s . . . . 5 = (LSSum‘𝐺)
2524, 19lsmsubg 18269 . . . 4 (((𝐺 DProd (𝑆𝐶)) ∈ (SubGrp‘𝐺) ∧ (𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺) ∧ (𝐺 DProd (𝑆𝐶)) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd (𝑆𝐷)))) → ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))) ∈ (SubGrp‘𝐺))
2611, 17, 23, 25syl3anc 1477 . . 3 (𝜑 → ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))) ∈ (SubGrp‘𝐺))
276eleq2d 2825 . . . . . 6 (𝜑 → (𝑥𝐼𝑥 ∈ (𝐶𝐷)))
28 elun 3896 . . . . . 6 (𝑥 ∈ (𝐶𝐷) ↔ (𝑥𝐶𝑥𝐷))
2927, 28syl6bb 276 . . . . 5 (𝜑 → (𝑥𝐼 ↔ (𝑥𝐶𝑥𝐷)))
3029biimpa 502 . . . 4 ((𝜑𝑥𝐼) → (𝑥𝐶𝑥𝐷))
31 fvres 6368 . . . . . . . 8 (𝑥𝐶 → ((𝑆𝐶)‘𝑥) = (𝑆𝑥))
3231adantl 473 . . . . . . 7 ((𝜑𝑥𝐶) → ((𝑆𝐶)‘𝑥) = (𝑆𝑥))
339adantr 472 . . . . . . . 8 ((𝜑𝑥𝐶) → 𝐺dom DProd (𝑆𝐶))
342, 7fssresd 6232 . . . . . . . . . 10 (𝜑 → (𝑆𝐶):𝐶⟶(SubGrp‘𝐺))
35 fdm 6212 . . . . . . . . . 10 ((𝑆𝐶):𝐶⟶(SubGrp‘𝐺) → dom (𝑆𝐶) = 𝐶)
3634, 35syl 17 . . . . . . . . 9 (𝜑 → dom (𝑆𝐶) = 𝐶)
3736adantr 472 . . . . . . . 8 ((𝜑𝑥𝐶) → dom (𝑆𝐶) = 𝐶)
38 simpr 479 . . . . . . . 8 ((𝜑𝑥𝐶) → 𝑥𝐶)
3933, 37, 38dprdub 18624 . . . . . . 7 ((𝜑𝑥𝐶) → ((𝑆𝐶)‘𝑥) ⊆ (𝐺 DProd (𝑆𝐶)))
4032, 39eqsstr3d 3781 . . . . . 6 ((𝜑𝑥𝐶) → (𝑆𝑥) ⊆ (𝐺 DProd (𝑆𝐶)))
4124lsmub1 18271 . . . . . . . 8 (((𝐺 DProd (𝑆𝐶)) ∈ (SubGrp‘𝐺) ∧ (𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺)) → (𝐺 DProd (𝑆𝐶)) ⊆ ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))))
4211, 17, 41syl2anc 696 . . . . . . 7 (𝜑 → (𝐺 DProd (𝑆𝐶)) ⊆ ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))))
4342adantr 472 . . . . . 6 ((𝜑𝑥𝐶) → (𝐺 DProd (𝑆𝐶)) ⊆ ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))))
4440, 43sstrd 3754 . . . . 5 ((𝜑𝑥𝐶) → (𝑆𝑥) ⊆ ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))))
45 fvres 6368 . . . . . . . 8 (𝑥𝐷 → ((𝑆𝐷)‘𝑥) = (𝑆𝑥))
4645adantl 473 . . . . . . 7 ((𝜑𝑥𝐷) → ((𝑆𝐷)‘𝑥) = (𝑆𝑥))
4715adantr 472 . . . . . . . 8 ((𝜑𝑥𝐷) → 𝐺dom DProd (𝑆𝐷))
482, 13fssresd 6232 . . . . . . . . . 10 (𝜑 → (𝑆𝐷):𝐷⟶(SubGrp‘𝐺))
49 fdm 6212 . . . . . . . . . 10 ((𝑆𝐷):𝐷⟶(SubGrp‘𝐺) → dom (𝑆𝐷) = 𝐷)
5048, 49syl 17 . . . . . . . . 9 (𝜑 → dom (𝑆𝐷) = 𝐷)
5150adantr 472 . . . . . . . 8 ((𝜑𝑥𝐷) → dom (𝑆𝐷) = 𝐷)
52 simpr 479 . . . . . . . 8 ((𝜑𝑥𝐷) → 𝑥𝐷)
5347, 51, 52dprdub 18624 . . . . . . 7 ((𝜑𝑥𝐷) → ((𝑆𝐷)‘𝑥) ⊆ (𝐺 DProd (𝑆𝐷)))
5446, 53eqsstr3d 3781 . . . . . 6 ((𝜑𝑥𝐷) → (𝑆𝑥) ⊆ (𝐺 DProd (𝑆𝐷)))
5524lsmub2 18272 . . . . . . . 8 (((𝐺 DProd (𝑆𝐶)) ∈ (SubGrp‘𝐺) ∧ (𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺)) → (𝐺 DProd (𝑆𝐷)) ⊆ ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))))
5611, 17, 55syl2anc 696 . . . . . . 7 (𝜑 → (𝐺 DProd (𝑆𝐷)) ⊆ ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))))
5756adantr 472 . . . . . 6 ((𝜑𝑥𝐷) → (𝐺 DProd (𝑆𝐷)) ⊆ ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))))
5854, 57sstrd 3754 . . . . 5 ((𝜑𝑥𝐷) → (𝑆𝑥) ⊆ ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))))
5944, 58jaodan 861 . . . 4 ((𝜑 ∧ (𝑥𝐶𝑥𝐷)) → (𝑆𝑥) ⊆ ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))))
6030, 59syldan 488 . . 3 ((𝜑𝑥𝐼) → (𝑆𝑥) ⊆ ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))))
611, 4, 26, 60dprdlub 18625 . 2 (𝜑 → (𝐺 DProd 𝑆) ⊆ ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))))
628simprd 482 . . 3 (𝜑 → (𝐺 DProd (𝑆𝐶)) ⊆ (𝐺 DProd 𝑆))
6314simprd 482 . . 3 (𝜑 → (𝐺 DProd (𝑆𝐷)) ⊆ (𝐺 DProd 𝑆))
64 dprdsubg 18623 . . . . 5 (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺))
651, 64syl 17 . . . 4 (𝜑 → (𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺))
6624lsmlub 18278 . . . 4 (((𝐺 DProd (𝑆𝐶)) ∈ (SubGrp‘𝐺) ∧ (𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺) ∧ (𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺)) → (((𝐺 DProd (𝑆𝐶)) ⊆ (𝐺 DProd 𝑆) ∧ (𝐺 DProd (𝑆𝐷)) ⊆ (𝐺 DProd 𝑆)) ↔ ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))) ⊆ (𝐺 DProd 𝑆)))
6711, 17, 65, 66syl3anc 1477 . . 3 (𝜑 → (((𝐺 DProd (𝑆𝐶)) ⊆ (𝐺 DProd 𝑆) ∧ (𝐺 DProd (𝑆𝐷)) ⊆ (𝐺 DProd 𝑆)) ↔ ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))) ⊆ (𝐺 DProd 𝑆)))
6862, 63, 67mpbi2and 994 . 2 (𝜑 → ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))) ⊆ (𝐺 DProd 𝑆))
6961, 68eqssd 3761 1 (𝜑 → (𝐺 DProd 𝑆) = ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∨ wo 382   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139   ∪ cun 3713   ∩ cin 3714   ⊆ wss 3715  ∅c0 4058  {csn 4321   class class class wbr 4804  dom cdm 5266   ↾ cres 5268  ⟶wf 6045  ‘cfv 6049  (class class class)co 6813  0gc0g 16302  SubGrpcsubg 17789  Cntzccntz 17948  LSSumclsm 18249   DProd cdprd 18592 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-om 7231  df-1st 7333  df-2nd 7334  df-supp 7464  df-tpos 7521  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-map 8025  df-ixp 8075  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fsupp 8441  df-oi 8580  df-card 8955  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-2 11271  df-n0 11485  df-z 11570  df-uz 11880  df-fz 12520  df-fzo 12660  df-seq 12996  df-hash 13312  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-0g 16304  df-gsum 16305  df-mre 16448  df-mrc 16449  df-acs 16451  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-mhm 17536  df-submnd 17537  df-grp 17626  df-minusg 17627  df-sbg 17628  df-mulg 17742  df-subg 17792  df-ghm 17859  df-gim 17902  df-cntz 17950  df-oppg 17976  df-lsm 18251  df-cmn 18395  df-dprd 18594 This theorem is referenced by:  dprdpr  18649  dpjlsm  18653  ablfac1eulem  18671  ablfac1eu  18672  pgpfaclem1  18680
 Copyright terms: Public domain W3C validator