![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dprdff | Structured version Visualization version GIF version |
Description: A finitely supported function in 𝑆 is a function into the base. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) |
Ref | Expression |
---|---|
dprdff.w | ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } |
dprdff.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
dprdff.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
dprdff.3 | ⊢ (𝜑 → 𝐹 ∈ 𝑊) |
dprdff.b | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
dprdff | ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dprdff.3 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝑊) | |
2 | dprdff.w | . . . . 5 ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } | |
3 | dprdff.1 | . . . . 5 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
4 | dprdff.2 | . . . . 5 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
5 | 2, 3, 4 | dprdw 18455 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ 𝑊 ↔ (𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥) ∧ 𝐹 finSupp 0 ))) |
6 | 1, 5 | mpbid 222 | . . 3 ⊢ (𝜑 → (𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥) ∧ 𝐹 finSupp 0 )) |
7 | 6 | simp1d 1093 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐼) |
8 | 6 | simp2d 1094 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥)) |
9 | 3, 4 | dprdf2 18452 | . . . . . . 7 ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
10 | 9 | ffvelrnda 6399 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑆‘𝑥) ∈ (SubGrp‘𝐺)) |
11 | dprdff.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐺) | |
12 | 11 | subgss 17642 | . . . . . 6 ⊢ ((𝑆‘𝑥) ∈ (SubGrp‘𝐺) → (𝑆‘𝑥) ⊆ 𝐵) |
13 | 10, 12 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑆‘𝑥) ⊆ 𝐵) |
14 | 13 | sseld 3635 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝐹‘𝑥) ∈ (𝑆‘𝑥) → (𝐹‘𝑥) ∈ 𝐵)) |
15 | 14 | ralimdva 2991 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥) → ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ 𝐵)) |
16 | 8, 15 | mpd 15 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ 𝐵) |
17 | ffnfv 6428 | . 2 ⊢ (𝐹:𝐼⟶𝐵 ↔ (𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ 𝐵)) | |
18 | 7, 16, 17 | sylanbrc 699 | 1 ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 ∀wral 2941 {crab 2945 ⊆ wss 3607 class class class wbr 4685 dom cdm 5143 Fn wfn 5921 ⟶wf 5922 ‘cfv 5926 Xcixp 7950 finSupp cfsupp 8316 Basecbs 15904 SubGrpcsubg 17635 DProd cdprd 18438 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-1st 7210 df-2nd 7211 df-ixp 7951 df-subg 17638 df-dprd 18440 |
This theorem is referenced by: dprdfcntz 18460 dprdssv 18461 dprdfid 18462 dprdfinv 18464 dprdfadd 18465 dprdfsub 18466 dprdfeq0 18467 dprdf11 18468 dprdlub 18471 dmdprdsplitlem 18482 dprddisj2 18484 dpjidcl 18503 |
Copyright terms: Public domain | W3C validator |