MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdfeq0 Structured version   Visualization version   GIF version

Theorem dprdfeq0 18467
Description: The zero function is the only function that sums to zero in a direct product. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.)
Hypotheses
Ref Expression
eldprdi.0 0 = (0g𝐺)
eldprdi.w 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
eldprdi.1 (𝜑𝐺dom DProd 𝑆)
eldprdi.2 (𝜑 → dom 𝑆 = 𝐼)
eldprdi.3 (𝜑𝐹𝑊)
Assertion
Ref Expression
dprdfeq0 (𝜑 → ((𝐺 Σg 𝐹) = 0𝐹 = (𝑥𝐼0 )))
Distinct variable groups:   𝑥,,𝐹   ,𝑖,𝐺,𝑥   ,𝐼,𝑖,𝑥   𝜑,𝑥   0 ,,𝑥   𝑆,,𝑖,𝑥
Allowed substitution hints:   𝜑(,𝑖)   𝐹(𝑖)   𝑊(𝑥,,𝑖)   0 (𝑖)

Proof of Theorem dprdfeq0
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eldprdi.w . . . . . . 7 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
2 eldprdi.1 . . . . . . 7 (𝜑𝐺dom DProd 𝑆)
3 eldprdi.2 . . . . . . 7 (𝜑 → dom 𝑆 = 𝐼)
4 eldprdi.3 . . . . . . 7 (𝜑𝐹𝑊)
5 eqid 2651 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
61, 2, 3, 4, 5dprdff 18457 . . . . . 6 (𝜑𝐹:𝐼⟶(Base‘𝐺))
76feqmptd 6288 . . . . 5 (𝜑𝐹 = (𝑥𝐼 ↦ (𝐹𝑥)))
87adantr 480 . . . 4 ((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) → 𝐹 = (𝑥𝐼 ↦ (𝐹𝑥)))
91, 2, 3, 4dprdfcl 18458 . . . . . . . . 9 ((𝜑𝑥𝐼) → (𝐹𝑥) ∈ (𝑆𝑥))
109adantlr 751 . . . . . . . 8 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ (𝑆𝑥))
11 eldprdi.0 . . . . . . . . . . . 12 0 = (0g𝐺)
122ad2antrr 762 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → 𝐺dom DProd 𝑆)
133ad2antrr 762 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → dom 𝑆 = 𝐼)
14 simpr 476 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → 𝑥𝐼)
15 eqid 2651 . . . . . . . . . . . . . 14 (𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 )) = (𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 ))
1611, 1, 12, 13, 14, 10, 15dprdfid 18462 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 )) ∈ 𝑊 ∧ (𝐺 Σg (𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 ))) = (𝐹𝑥)))
1716simpld 474 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 )) ∈ 𝑊)
184ad2antrr 762 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → 𝐹𝑊)
19 eqid 2651 . . . . . . . . . . . 12 (-g𝐺) = (-g𝐺)
2011, 1, 12, 13, 17, 18, 19dprdfsub 18466 . . . . . . . . . . 11 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (((𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 )) ∘𝑓 (-g𝐺)𝐹) ∈ 𝑊 ∧ (𝐺 Σg ((𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 )) ∘𝑓 (-g𝐺)𝐹)) = ((𝐺 Σg (𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 )))(-g𝐺)(𝐺 Σg 𝐹))))
2120simprd 478 . . . . . . . . . 10 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝐺 Σg ((𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 )) ∘𝑓 (-g𝐺)𝐹)) = ((𝐺 Σg (𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 )))(-g𝐺)(𝐺 Σg 𝐹)))
222, 3dprddomcld 18446 . . . . . . . . . . . . 13 (𝜑𝐼 ∈ V)
2322ad2antrr 762 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → 𝐼 ∈ V)
24 fvex 6239 . . . . . . . . . . . . . 14 (𝐹𝑥) ∈ V
25 fvex 6239 . . . . . . . . . . . . . . 15 (0g𝐺) ∈ V
2611, 25eqeltri 2726 . . . . . . . . . . . . . 14 0 ∈ V
2724, 26ifex 4189 . . . . . . . . . . . . 13 if(𝑦 = 𝑥, (𝐹𝑥), 0 ) ∈ V
2827a1i 11 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) → if(𝑦 = 𝑥, (𝐹𝑥), 0 ) ∈ V)
29 fvexd 6241 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) → (𝐹𝑦) ∈ V)
30 eqidd 2652 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 )) = (𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 )))
316ad2antrr 762 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → 𝐹:𝐼⟶(Base‘𝐺))
3231feqmptd 6288 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → 𝐹 = (𝑦𝐼 ↦ (𝐹𝑦)))
3323, 28, 29, 30, 32offval2 6956 . . . . . . . . . . 11 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 )) ∘𝑓 (-g𝐺)𝐹) = (𝑦𝐼 ↦ (if(𝑦 = 𝑥, (𝐹𝑥), 0 )(-g𝐺)(𝐹𝑦))))
3433oveq2d 6706 . . . . . . . . . 10 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝐺 Σg ((𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 )) ∘𝑓 (-g𝐺)𝐹)) = (𝐺 Σg (𝑦𝐼 ↦ (if(𝑦 = 𝑥, (𝐹𝑥), 0 )(-g𝐺)(𝐹𝑦)))))
3516simprd 478 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝐺 Σg (𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 ))) = (𝐹𝑥))
36 simplr 807 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝐺 Σg 𝐹) = 0 )
3735, 36oveq12d 6708 . . . . . . . . . . 11 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → ((𝐺 Σg (𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 )))(-g𝐺)(𝐺 Σg 𝐹)) = ((𝐹𝑥)(-g𝐺) 0 ))
38 dprdgrp 18450 . . . . . . . . . . . . 13 (𝐺dom DProd 𝑆𝐺 ∈ Grp)
3912, 38syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → 𝐺 ∈ Grp)
4031, 14ffvelrnd 6400 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ (Base‘𝐺))
415, 11, 19grpsubid1 17547 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (𝐹𝑥) ∈ (Base‘𝐺)) → ((𝐹𝑥)(-g𝐺) 0 ) = (𝐹𝑥))
4239, 40, 41syl2anc 694 . . . . . . . . . . 11 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → ((𝐹𝑥)(-g𝐺) 0 ) = (𝐹𝑥))
4337, 42eqtrd 2685 . . . . . . . . . 10 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → ((𝐺 Σg (𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 )))(-g𝐺)(𝐺 Σg 𝐹)) = (𝐹𝑥))
4421, 34, 433eqtr3d 2693 . . . . . . . . 9 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝐺 Σg (𝑦𝐼 ↦ (if(𝑦 = 𝑥, (𝐹𝑥), 0 )(-g𝐺)(𝐹𝑦)))) = (𝐹𝑥))
45 eqid 2651 . . . . . . . . . 10 (Cntz‘𝐺) = (Cntz‘𝐺)
46 grpmnd 17476 . . . . . . . . . . . 12 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
472, 38, 463syl 18 . . . . . . . . . . 11 (𝜑𝐺 ∈ Mnd)
4847ad2antrr 762 . . . . . . . . . 10 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → 𝐺 ∈ Mnd)
495subgacs 17676 . . . . . . . . . . . . 13 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)))
50 acsmre 16360 . . . . . . . . . . . . 13 ((SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
5139, 49, 503syl 18 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
52 imassrn 5512 . . . . . . . . . . . . . 14 (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ ran 𝑆
532, 3dprdf2 18452 . . . . . . . . . . . . . . . . 17 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
5453ad2antrr 762 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → 𝑆:𝐼⟶(SubGrp‘𝐺))
55 frn 6091 . . . . . . . . . . . . . . . 16 (𝑆:𝐼⟶(SubGrp‘𝐺) → ran 𝑆 ⊆ (SubGrp‘𝐺))
5654, 55syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → ran 𝑆 ⊆ (SubGrp‘𝐺))
57 mresspw 16299 . . . . . . . . . . . . . . . 16 ((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺))
5851, 57syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺))
5956, 58sstrd 3646 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → ran 𝑆 ⊆ 𝒫 (Base‘𝐺))
6052, 59syl5ss 3647 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ 𝒫 (Base‘𝐺))
61 sspwuni 4643 . . . . . . . . . . . . 13 ((𝑆 “ (𝐼 ∖ {𝑥})) ⊆ 𝒫 (Base‘𝐺) ↔ (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ (Base‘𝐺))
6260, 61sylib 208 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ (Base‘𝐺))
63 eqid 2651 . . . . . . . . . . . . 13 (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺))
6463mrccl 16318 . . . . . . . . . . . 12 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ (Base‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺))
6551, 62, 64syl2anc 694 . . . . . . . . . . 11 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺))
66 subgsubm 17663 . . . . . . . . . . 11 (((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺) → ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))) ∈ (SubMnd‘𝐺))
6765, 66syl 17 . . . . . . . . . 10 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))) ∈ (SubMnd‘𝐺))
68 oveq1 6697 . . . . . . . . . . . . 13 ((𝐹𝑥) = if(𝑦 = 𝑥, (𝐹𝑥), 0 ) → ((𝐹𝑥)(-g𝐺)(𝐹𝑦)) = (if(𝑦 = 𝑥, (𝐹𝑥), 0 )(-g𝐺)(𝐹𝑦)))
6968eleq1d 2715 . . . . . . . . . . . 12 ((𝐹𝑥) = if(𝑦 = 𝑥, (𝐹𝑥), 0 ) → (((𝐹𝑥)(-g𝐺)(𝐹𝑦)) ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))) ↔ (if(𝑦 = 𝑥, (𝐹𝑥), 0 )(-g𝐺)(𝐹𝑦)) ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))))
70 oveq1 6697 . . . . . . . . . . . . 13 ( 0 = if(𝑦 = 𝑥, (𝐹𝑥), 0 ) → ( 0 (-g𝐺)(𝐹𝑦)) = (if(𝑦 = 𝑥, (𝐹𝑥), 0 )(-g𝐺)(𝐹𝑦)))
7170eleq1d 2715 . . . . . . . . . . . 12 ( 0 = if(𝑦 = 𝑥, (𝐹𝑥), 0 ) → (( 0 (-g𝐺)(𝐹𝑦)) ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))) ↔ (if(𝑦 = 𝑥, (𝐹𝑥), 0 )(-g𝐺)(𝐹𝑦)) ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))))
72 simpr 476 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) ∧ 𝑦 = 𝑥) → 𝑦 = 𝑥)
7372fveq2d 6233 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) ∧ 𝑦 = 𝑥) → (𝐹𝑦) = (𝐹𝑥))
7473oveq2d 6706 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) ∧ 𝑦 = 𝑥) → ((𝐹𝑥)(-g𝐺)(𝐹𝑦)) = ((𝐹𝑥)(-g𝐺)(𝐹𝑥)))
755, 11, 19grpsubid 17546 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ Grp ∧ (𝐹𝑥) ∈ (Base‘𝐺)) → ((𝐹𝑥)(-g𝐺)(𝐹𝑥)) = 0 )
7639, 40, 75syl2anc 694 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → ((𝐹𝑥)(-g𝐺)(𝐹𝑥)) = 0 )
7711subg0cl 17649 . . . . . . . . . . . . . . . 16 (((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺) → 0 ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))))
7865, 77syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → 0 ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))))
7976, 78eqeltrd 2730 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → ((𝐹𝑥)(-g𝐺)(𝐹𝑥)) ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))))
8079ad2antrr 762 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) ∧ 𝑦 = 𝑥) → ((𝐹𝑥)(-g𝐺)(𝐹𝑥)) ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))))
8174, 80eqeltrd 2730 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) ∧ 𝑦 = 𝑥) → ((𝐹𝑥)(-g𝐺)(𝐹𝑦)) ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))))
8265ad2antrr 762 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) ∧ ¬ 𝑦 = 𝑥) → ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺))
8382, 77syl 17 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) ∧ ¬ 𝑦 = 𝑥) → 0 ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))))
8451, 63, 62mrcssidd 16332 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))))
8584ad2antrr 762 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) ∧ ¬ 𝑦 = 𝑥) → (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))))
861, 12, 13, 18dprdfcl 18458 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) → (𝐹𝑦) ∈ (𝑆𝑦))
8786adantr 480 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) ∧ ¬ 𝑦 = 𝑥) → (𝐹𝑦) ∈ (𝑆𝑦))
88 ffn 6083 . . . . . . . . . . . . . . . . . 18 (𝑆:𝐼⟶(SubGrp‘𝐺) → 𝑆 Fn 𝐼)
8954, 88syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → 𝑆 Fn 𝐼)
9089ad2antrr 762 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) ∧ ¬ 𝑦 = 𝑥) → 𝑆 Fn 𝐼)
91 difssd 3771 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) ∧ ¬ 𝑦 = 𝑥) → (𝐼 ∖ {𝑥}) ⊆ 𝐼)
92 df-ne 2824 . . . . . . . . . . . . . . . . . 18 (𝑦𝑥 ↔ ¬ 𝑦 = 𝑥)
93 eldifsn 4350 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (𝐼 ∖ {𝑥}) ↔ (𝑦𝐼𝑦𝑥))
9493biimpri 218 . . . . . . . . . . . . . . . . . 18 ((𝑦𝐼𝑦𝑥) → 𝑦 ∈ (𝐼 ∖ {𝑥}))
9592, 94sylan2br 492 . . . . . . . . . . . . . . . . 17 ((𝑦𝐼 ∧ ¬ 𝑦 = 𝑥) → 𝑦 ∈ (𝐼 ∖ {𝑥}))
9695adantll 750 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) ∧ ¬ 𝑦 = 𝑥) → 𝑦 ∈ (𝐼 ∖ {𝑥}))
97 fnfvima 6536 . . . . . . . . . . . . . . . 16 ((𝑆 Fn 𝐼 ∧ (𝐼 ∖ {𝑥}) ⊆ 𝐼𝑦 ∈ (𝐼 ∖ {𝑥})) → (𝑆𝑦) ∈ (𝑆 “ (𝐼 ∖ {𝑥})))
9890, 91, 96, 97syl3anc 1366 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) ∧ ¬ 𝑦 = 𝑥) → (𝑆𝑦) ∈ (𝑆 “ (𝐼 ∖ {𝑥})))
99 elunii 4473 . . . . . . . . . . . . . . 15 (((𝐹𝑦) ∈ (𝑆𝑦) ∧ (𝑆𝑦) ∈ (𝑆 “ (𝐼 ∖ {𝑥}))) → (𝐹𝑦) ∈ (𝑆 “ (𝐼 ∖ {𝑥})))
10087, 98, 99syl2anc 694 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) ∧ ¬ 𝑦 = 𝑥) → (𝐹𝑦) ∈ (𝑆 “ (𝐼 ∖ {𝑥})))
10185, 100sseldd 3637 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) ∧ ¬ 𝑦 = 𝑥) → (𝐹𝑦) ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))))
10219subgsubcl 17652 . . . . . . . . . . . . 13 ((((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺) ∧ 0 ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))) ∧ (𝐹𝑦) ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) → ( 0 (-g𝐺)(𝐹𝑦)) ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))))
10382, 83, 101, 102syl3anc 1366 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) ∧ ¬ 𝑦 = 𝑥) → ( 0 (-g𝐺)(𝐹𝑦)) ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))))
10469, 71, 81, 103ifbothda 4156 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) → (if(𝑦 = 𝑥, (𝐹𝑥), 0 )(-g𝐺)(𝐹𝑦)) ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))))
105 eqid 2651 . . . . . . . . . . 11 (𝑦𝐼 ↦ (if(𝑦 = 𝑥, (𝐹𝑥), 0 )(-g𝐺)(𝐹𝑦))) = (𝑦𝐼 ↦ (if(𝑦 = 𝑥, (𝐹𝑥), 0 )(-g𝐺)(𝐹𝑦)))
106104, 105fmptd 6425 . . . . . . . . . 10 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝑦𝐼 ↦ (if(𝑦 = 𝑥, (𝐹𝑥), 0 )(-g𝐺)(𝐹𝑦))):𝐼⟶((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))))
10720simpld 474 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 )) ∘𝑓 (-g𝐺)𝐹) ∈ 𝑊)
10833, 107eqeltrrd 2731 . . . . . . . . . . 11 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝑦𝐼 ↦ (if(𝑦 = 𝑥, (𝐹𝑥), 0 )(-g𝐺)(𝐹𝑦))) ∈ 𝑊)
1091, 12, 13, 108, 45dprdfcntz 18460 . . . . . . . . . 10 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → ran (𝑦𝐼 ↦ (if(𝑦 = 𝑥, (𝐹𝑥), 0 )(-g𝐺)(𝐹𝑦))) ⊆ ((Cntz‘𝐺)‘ran (𝑦𝐼 ↦ (if(𝑦 = 𝑥, (𝐹𝑥), 0 )(-g𝐺)(𝐹𝑦)))))
1101, 12, 13, 108dprdffsupp 18459 . . . . . . . . . 10 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝑦𝐼 ↦ (if(𝑦 = 𝑥, (𝐹𝑥), 0 )(-g𝐺)(𝐹𝑦))) finSupp 0 )
11111, 45, 48, 23, 67, 106, 109, 110gsumzsubmcl 18364 . . . . . . . . 9 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝐺 Σg (𝑦𝐼 ↦ (if(𝑦 = 𝑥, (𝐹𝑥), 0 )(-g𝐺)(𝐹𝑦)))) ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))))
11244, 111eqeltrrd 2731 . . . . . . . 8 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))))
11310, 112elind 3831 . . . . . . 7 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))))
11412, 13, 14, 11, 63dprddisj 18454 . . . . . . 7 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })
115113, 114eleqtrd 2732 . . . . . 6 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ { 0 })
116 elsni 4227 . . . . . 6 ((𝐹𝑥) ∈ { 0 } → (𝐹𝑥) = 0 )
117115, 116syl 17 . . . . 5 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝐹𝑥) = 0 )
118117mpteq2dva 4777 . . . 4 ((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) → (𝑥𝐼 ↦ (𝐹𝑥)) = (𝑥𝐼0 ))
1198, 118eqtrd 2685 . . 3 ((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) → 𝐹 = (𝑥𝐼0 ))
120119ex 449 . 2 (𝜑 → ((𝐺 Σg 𝐹) = 0𝐹 = (𝑥𝐼0 )))
12111gsumz 17421 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐼 ∈ V) → (𝐺 Σg (𝑥𝐼0 )) = 0 )
12247, 22, 121syl2anc 694 . . 3 (𝜑 → (𝐺 Σg (𝑥𝐼0 )) = 0 )
123 oveq2 6698 . . . 4 (𝐹 = (𝑥𝐼0 ) → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑥𝐼0 )))
124123eqeq1d 2653 . . 3 (𝐹 = (𝑥𝐼0 ) → ((𝐺 Σg 𝐹) = 0 ↔ (𝐺 Σg (𝑥𝐼0 )) = 0 ))
125122, 124syl5ibrcom 237 . 2 (𝜑 → (𝐹 = (𝑥𝐼0 ) → (𝐺 Σg 𝐹) = 0 ))
126120, 125impbid 202 1 (𝜑 → ((𝐺 Σg 𝐹) = 0𝐹 = (𝑥𝐼0 )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wne 2823  {crab 2945  Vcvv 3231  cdif 3604  cin 3606  wss 3607  ifcif 4119  𝒫 cpw 4191  {csn 4210   cuni 4468   class class class wbr 4685  cmpt 4762  dom cdm 5143  ran crn 5144  cima 5146   Fn wfn 5921  wf 5922  cfv 5926  (class class class)co 6690  𝑓 cof 6937  Xcixp 7950   finSupp cfsupp 8316  Basecbs 15904  0gc0g 16147   Σg cgsu 16148  Moorecmre 16289  mrClscmrc 16290  ACScacs 16292  Mndcmnd 17341  SubMndcsubmnd 17381  Grpcgrp 17469  -gcsg 17471  SubGrpcsubg 17635  Cntzccntz 17794   DProd cdprd 18438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-tpos 7397  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505  df-seq 12842  df-hash 13158  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-0g 16149  df-gsum 16150  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-mhm 17382  df-submnd 17383  df-grp 17472  df-minusg 17473  df-sbg 17474  df-mulg 17588  df-subg 17638  df-ghm 17705  df-gim 17748  df-cntz 17796  df-oppg 17822  df-cmn 18241  df-dprd 18440
This theorem is referenced by:  dprdf11  18468
  Copyright terms: Public domain W3C validator