MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdf1o Structured version   Visualization version   GIF version

Theorem dprdf1o 18631
Description: Rearrange the index set of a direct product family. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
dprdf1o.1 (𝜑𝐺dom DProd 𝑆)
dprdf1o.2 (𝜑 → dom 𝑆 = 𝐼)
dprdf1o.3 (𝜑𝐹:𝐽1-1-onto𝐼)
Assertion
Ref Expression
dprdf1o (𝜑 → (𝐺dom DProd (𝑆𝐹) ∧ (𝐺 DProd (𝑆𝐹)) = (𝐺 DProd 𝑆)))

Proof of Theorem dprdf1o
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2760 . . 3 (Cntz‘𝐺) = (Cntz‘𝐺)
2 eqid 2760 . . 3 (0g𝐺) = (0g𝐺)
3 eqid 2760 . . 3 (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺))
4 dprdf1o.1 . . . 4 (𝜑𝐺dom DProd 𝑆)
5 dprdgrp 18604 . . . 4 (𝐺dom DProd 𝑆𝐺 ∈ Grp)
64, 5syl 17 . . 3 (𝜑𝐺 ∈ Grp)
7 dprdf1o.3 . . . . 5 (𝜑𝐹:𝐽1-1-onto𝐼)
8 f1of1 6297 . . . . 5 (𝐹:𝐽1-1-onto𝐼𝐹:𝐽1-1𝐼)
97, 8syl 17 . . . 4 (𝜑𝐹:𝐽1-1𝐼)
10 dprdf1o.2 . . . . 5 (𝜑 → dom 𝑆 = 𝐼)
114, 10dprddomcld 18600 . . . 4 (𝜑𝐼 ∈ V)
12 f1dmex 7301 . . . 4 ((𝐹:𝐽1-1𝐼𝐼 ∈ V) → 𝐽 ∈ V)
139, 11, 12syl2anc 696 . . 3 (𝜑𝐽 ∈ V)
144, 10dprdf2 18606 . . . 4 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
15 f1of 6298 . . . . 5 (𝐹:𝐽1-1-onto𝐼𝐹:𝐽𝐼)
167, 15syl 17 . . . 4 (𝜑𝐹:𝐽𝐼)
17 fco 6219 . . . 4 ((𝑆:𝐼⟶(SubGrp‘𝐺) ∧ 𝐹:𝐽𝐼) → (𝑆𝐹):𝐽⟶(SubGrp‘𝐺))
1814, 16, 17syl2anc 696 . . 3 (𝜑 → (𝑆𝐹):𝐽⟶(SubGrp‘𝐺))
194adantr 472 . . . . 5 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → 𝐺dom DProd 𝑆)
2010adantr 472 . . . . 5 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → dom 𝑆 = 𝐼)
2116adantr 472 . . . . . 6 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → 𝐹:𝐽𝐼)
22 simpr1 1234 . . . . . 6 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → 𝑥𝐽)
2321, 22ffvelrnd 6523 . . . . 5 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → (𝐹𝑥) ∈ 𝐼)
24 simpr2 1236 . . . . . 6 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → 𝑦𝐽)
2521, 24ffvelrnd 6523 . . . . 5 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → (𝐹𝑦) ∈ 𝐼)
26 simpr3 1238 . . . . . 6 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → 𝑥𝑦)
279adantr 472 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → 𝐹:𝐽1-1𝐼)
28 f1fveq 6682 . . . . . . . 8 ((𝐹:𝐽1-1𝐼 ∧ (𝑥𝐽𝑦𝐽)) → ((𝐹𝑥) = (𝐹𝑦) ↔ 𝑥 = 𝑦))
2927, 22, 24, 28syl12anc 1475 . . . . . . 7 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → ((𝐹𝑥) = (𝐹𝑦) ↔ 𝑥 = 𝑦))
3029necon3bid 2976 . . . . . 6 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → ((𝐹𝑥) ≠ (𝐹𝑦) ↔ 𝑥𝑦))
3126, 30mpbird 247 . . . . 5 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → (𝐹𝑥) ≠ (𝐹𝑦))
3219, 20, 23, 25, 31, 1dprdcntz 18607 . . . 4 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → (𝑆‘(𝐹𝑥)) ⊆ ((Cntz‘𝐺)‘(𝑆‘(𝐹𝑦))))
33 fvco3 6437 . . . . 5 ((𝐹:𝐽𝐼𝑥𝐽) → ((𝑆𝐹)‘𝑥) = (𝑆‘(𝐹𝑥)))
3421, 22, 33syl2anc 696 . . . 4 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → ((𝑆𝐹)‘𝑥) = (𝑆‘(𝐹𝑥)))
35 fvco3 6437 . . . . . 6 ((𝐹:𝐽𝐼𝑦𝐽) → ((𝑆𝐹)‘𝑦) = (𝑆‘(𝐹𝑦)))
3621, 24, 35syl2anc 696 . . . . 5 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → ((𝑆𝐹)‘𝑦) = (𝑆‘(𝐹𝑦)))
3736fveq2d 6356 . . . 4 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → ((Cntz‘𝐺)‘((𝑆𝐹)‘𝑦)) = ((Cntz‘𝐺)‘(𝑆‘(𝐹𝑦))))
3832, 34, 373sstr4d 3789 . . 3 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → ((𝑆𝐹)‘𝑥) ⊆ ((Cntz‘𝐺)‘((𝑆𝐹)‘𝑦)))
3916, 33sylan 489 . . . . . 6 ((𝜑𝑥𝐽) → ((𝑆𝐹)‘𝑥) = (𝑆‘(𝐹𝑥)))
40 imaco 5801 . . . . . . . . 9 ((𝑆𝐹) “ (𝐽 ∖ {𝑥})) = (𝑆 “ (𝐹 “ (𝐽 ∖ {𝑥})))
417adantr 472 . . . . . . . . . . . 12 ((𝜑𝑥𝐽) → 𝐹:𝐽1-1-onto𝐼)
42 dff1o3 6304 . . . . . . . . . . . . 13 (𝐹:𝐽1-1-onto𝐼 ↔ (𝐹:𝐽onto𝐼 ∧ Fun 𝐹))
4342simprbi 483 . . . . . . . . . . . 12 (𝐹:𝐽1-1-onto𝐼 → Fun 𝐹)
44 imadif 6134 . . . . . . . . . . . 12 (Fun 𝐹 → (𝐹 “ (𝐽 ∖ {𝑥})) = ((𝐹𝐽) ∖ (𝐹 “ {𝑥})))
4541, 43, 443syl 18 . . . . . . . . . . 11 ((𝜑𝑥𝐽) → (𝐹 “ (𝐽 ∖ {𝑥})) = ((𝐹𝐽) ∖ (𝐹 “ {𝑥})))
46 f1ofo 6305 . . . . . . . . . . . . 13 (𝐹:𝐽1-1-onto𝐼𝐹:𝐽onto𝐼)
47 foima 6281 . . . . . . . . . . . . 13 (𝐹:𝐽onto𝐼 → (𝐹𝐽) = 𝐼)
4841, 46, 473syl 18 . . . . . . . . . . . 12 ((𝜑𝑥𝐽) → (𝐹𝐽) = 𝐼)
49 f1ofn 6299 . . . . . . . . . . . . . . 15 (𝐹:𝐽1-1-onto𝐼𝐹 Fn 𝐽)
507, 49syl 17 . . . . . . . . . . . . . 14 (𝜑𝐹 Fn 𝐽)
51 fnsnfv 6420 . . . . . . . . . . . . . 14 ((𝐹 Fn 𝐽𝑥𝐽) → {(𝐹𝑥)} = (𝐹 “ {𝑥}))
5250, 51sylan 489 . . . . . . . . . . . . 13 ((𝜑𝑥𝐽) → {(𝐹𝑥)} = (𝐹 “ {𝑥}))
5352eqcomd 2766 . . . . . . . . . . . 12 ((𝜑𝑥𝐽) → (𝐹 “ {𝑥}) = {(𝐹𝑥)})
5448, 53difeq12d 3872 . . . . . . . . . . 11 ((𝜑𝑥𝐽) → ((𝐹𝐽) ∖ (𝐹 “ {𝑥})) = (𝐼 ∖ {(𝐹𝑥)}))
5545, 54eqtrd 2794 . . . . . . . . . 10 ((𝜑𝑥𝐽) → (𝐹 “ (𝐽 ∖ {𝑥})) = (𝐼 ∖ {(𝐹𝑥)}))
5655imaeq2d 5624 . . . . . . . . 9 ((𝜑𝑥𝐽) → (𝑆 “ (𝐹 “ (𝐽 ∖ {𝑥}))) = (𝑆 “ (𝐼 ∖ {(𝐹𝑥)})))
5740, 56syl5eq 2806 . . . . . . . 8 ((𝜑𝑥𝐽) → ((𝑆𝐹) “ (𝐽 ∖ {𝑥})) = (𝑆 “ (𝐼 ∖ {(𝐹𝑥)})))
5857unieqd 4598 . . . . . . 7 ((𝜑𝑥𝐽) → ((𝑆𝐹) “ (𝐽 ∖ {𝑥})) = (𝑆 “ (𝐼 ∖ {(𝐹𝑥)})))
5958fveq2d 6356 . . . . . 6 ((𝜑𝑥𝐽) → ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐹) “ (𝐽 ∖ {𝑥}))) = ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {(𝐹𝑥)}))))
6039, 59ineq12d 3958 . . . . 5 ((𝜑𝑥𝐽) → (((𝑆𝐹)‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐹) “ (𝐽 ∖ {𝑥})))) = ((𝑆‘(𝐹𝑥)) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {(𝐹𝑥)})))))
614adantr 472 . . . . . 6 ((𝜑𝑥𝐽) → 𝐺dom DProd 𝑆)
6210adantr 472 . . . . . 6 ((𝜑𝑥𝐽) → dom 𝑆 = 𝐼)
6316ffvelrnda 6522 . . . . . 6 ((𝜑𝑥𝐽) → (𝐹𝑥) ∈ 𝐼)
6461, 62, 63, 2, 3dprddisj 18608 . . . . 5 ((𝜑𝑥𝐽) → ((𝑆‘(𝐹𝑥)) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {(𝐹𝑥)})))) = {(0g𝐺)})
6560, 64eqtrd 2794 . . . 4 ((𝜑𝑥𝐽) → (((𝑆𝐹)‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐹) “ (𝐽 ∖ {𝑥})))) = {(0g𝐺)})
66 eqimss 3798 . . . 4 ((((𝑆𝐹)‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐹) “ (𝐽 ∖ {𝑥})))) = {(0g𝐺)} → (((𝑆𝐹)‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐹) “ (𝐽 ∖ {𝑥})))) ⊆ {(0g𝐺)})
6765, 66syl 17 . . 3 ((𝜑𝑥𝐽) → (((𝑆𝐹)‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐹) “ (𝐽 ∖ {𝑥})))) ⊆ {(0g𝐺)})
681, 2, 3, 6, 13, 18, 38, 67dmdprdd 18598 . 2 (𝜑𝐺dom DProd (𝑆𝐹))
69 rnco2 5803 . . . . . 6 ran (𝑆𝐹) = (𝑆 “ ran 𝐹)
70 forn 6279 . . . . . . . . 9 (𝐹:𝐽onto𝐼 → ran 𝐹 = 𝐼)
717, 46, 703syl 18 . . . . . . . 8 (𝜑 → ran 𝐹 = 𝐼)
7271imaeq2d 5624 . . . . . . 7 (𝜑 → (𝑆 “ ran 𝐹) = (𝑆𝐼))
73 ffn 6206 . . . . . . . 8 (𝑆:𝐼⟶(SubGrp‘𝐺) → 𝑆 Fn 𝐼)
74 fnima 6171 . . . . . . . 8 (𝑆 Fn 𝐼 → (𝑆𝐼) = ran 𝑆)
7514, 73, 743syl 18 . . . . . . 7 (𝜑 → (𝑆𝐼) = ran 𝑆)
7672, 75eqtrd 2794 . . . . . 6 (𝜑 → (𝑆 “ ran 𝐹) = ran 𝑆)
7769, 76syl5eq 2806 . . . . 5 (𝜑 → ran (𝑆𝐹) = ran 𝑆)
7877unieqd 4598 . . . 4 (𝜑 ran (𝑆𝐹) = ran 𝑆)
7978fveq2d 6356 . . 3 (𝜑 → ((mrCls‘(SubGrp‘𝐺))‘ ran (𝑆𝐹)) = ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆))
803dprdspan 18626 . . . 4 (𝐺dom DProd (𝑆𝐹) → (𝐺 DProd (𝑆𝐹)) = ((mrCls‘(SubGrp‘𝐺))‘ ran (𝑆𝐹)))
8168, 80syl 17 . . 3 (𝜑 → (𝐺 DProd (𝑆𝐹)) = ((mrCls‘(SubGrp‘𝐺))‘ ran (𝑆𝐹)))
823dprdspan 18626 . . . 4 (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) = ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆))
834, 82syl 17 . . 3 (𝜑 → (𝐺 DProd 𝑆) = ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆))
8479, 81, 833eqtr4d 2804 . 2 (𝜑 → (𝐺 DProd (𝑆𝐹)) = (𝐺 DProd 𝑆))
8568, 84jca 555 1 (𝜑 → (𝐺dom DProd (𝑆𝐹) ∧ (𝐺 DProd (𝑆𝐹)) = (𝐺 DProd 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wne 2932  Vcvv 3340  cdif 3712  cin 3714  wss 3715  {csn 4321   cuni 4588   class class class wbr 4804  ccnv 5265  dom cdm 5266  ran crn 5267  cima 5269  ccom 5270  Fun wfun 6043   Fn wfn 6044  wf 6045  1-1wf1 6046  ontowfo 6047  1-1-ontowf1o 6048  cfv 6049  (class class class)co 6813  0gc0g 16302  mrClscmrc 16445  Grpcgrp 17623  SubGrpcsubg 17789  Cntzccntz 17948   DProd cdprd 18592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-om 7231  df-1st 7333  df-2nd 7334  df-supp 7464  df-tpos 7521  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-map 8025  df-ixp 8075  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fsupp 8441  df-oi 8580  df-card 8955  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-2 11271  df-n0 11485  df-z 11570  df-uz 11880  df-fz 12520  df-fzo 12660  df-seq 12996  df-hash 13312  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-0g 16304  df-gsum 16305  df-mre 16448  df-mrc 16449  df-acs 16451  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-mhm 17536  df-submnd 17537  df-grp 17626  df-minusg 17627  df-sbg 17628  df-mulg 17742  df-subg 17792  df-ghm 17859  df-gim 17902  df-cntz 17950  df-oppg 17976  df-cmn 18395  df-dprd 18594
This theorem is referenced by:  dprdf1  18632  ablfaclem2  18685
  Copyright terms: Public domain W3C validator