Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdf1 Structured version   Visualization version   GIF version

Theorem dprdf1 18632
 Description: Rearrange the index set of a direct product family. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
dprdf1.1 (𝜑𝐺dom DProd 𝑆)
dprdf1.2 (𝜑 → dom 𝑆 = 𝐼)
dprdf1.3 (𝜑𝐹:𝐽1-1𝐼)
Assertion
Ref Expression
dprdf1 (𝜑 → (𝐺dom DProd (𝑆𝐹) ∧ (𝐺 DProd (𝑆𝐹)) ⊆ (𝐺 DProd 𝑆)))

Proof of Theorem dprdf1
StepHypRef Expression
1 dprdf1.1 . . . . . . 7 (𝜑𝐺dom DProd 𝑆)
2 dprdf1.2 . . . . . . 7 (𝜑 → dom 𝑆 = 𝐼)
3 dprdf1.3 . . . . . . . 8 (𝜑𝐹:𝐽1-1𝐼)
4 f1f 6262 . . . . . . . 8 (𝐹:𝐽1-1𝐼𝐹:𝐽𝐼)
5 frn 6214 . . . . . . . 8 (𝐹:𝐽𝐼 → ran 𝐹𝐼)
63, 4, 53syl 18 . . . . . . 7 (𝜑 → ran 𝐹𝐼)
71, 2, 6dprdres 18627 . . . . . 6 (𝜑 → (𝐺dom DProd (𝑆 ↾ ran 𝐹) ∧ (𝐺 DProd (𝑆 ↾ ran 𝐹)) ⊆ (𝐺 DProd 𝑆)))
87simpld 477 . . . . 5 (𝜑𝐺dom DProd (𝑆 ↾ ran 𝐹))
91, 2dprdf2 18606 . . . . . . 7 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
109, 6fssresd 6232 . . . . . 6 (𝜑 → (𝑆 ↾ ran 𝐹):ran 𝐹⟶(SubGrp‘𝐺))
11 fdm 6212 . . . . . 6 ((𝑆 ↾ ran 𝐹):ran 𝐹⟶(SubGrp‘𝐺) → dom (𝑆 ↾ ran 𝐹) = ran 𝐹)
1210, 11syl 17 . . . . 5 (𝜑 → dom (𝑆 ↾ ran 𝐹) = ran 𝐹)
13 f1f1orn 6309 . . . . . 6 (𝐹:𝐽1-1𝐼𝐹:𝐽1-1-onto→ran 𝐹)
143, 13syl 17 . . . . 5 (𝜑𝐹:𝐽1-1-onto→ran 𝐹)
158, 12, 14dprdf1o 18631 . . . 4 (𝜑 → (𝐺dom DProd ((𝑆 ↾ ran 𝐹) ∘ 𝐹) ∧ (𝐺 DProd ((𝑆 ↾ ran 𝐹) ∘ 𝐹)) = (𝐺 DProd (𝑆 ↾ ran 𝐹))))
1615simpld 477 . . 3 (𝜑𝐺dom DProd ((𝑆 ↾ ran 𝐹) ∘ 𝐹))
17 ssid 3765 . . . 4 ran 𝐹 ⊆ ran 𝐹
18 cores 5799 . . . 4 (ran 𝐹 ⊆ ran 𝐹 → ((𝑆 ↾ ran 𝐹) ∘ 𝐹) = (𝑆𝐹))
1917, 18ax-mp 5 . . 3 ((𝑆 ↾ ran 𝐹) ∘ 𝐹) = (𝑆𝐹)
2016, 19syl6breq 4845 . 2 (𝜑𝐺dom DProd (𝑆𝐹))
2119oveq2i 6824 . . . 4 (𝐺 DProd ((𝑆 ↾ ran 𝐹) ∘ 𝐹)) = (𝐺 DProd (𝑆𝐹))
2215simprd 482 . . . 4 (𝜑 → (𝐺 DProd ((𝑆 ↾ ran 𝐹) ∘ 𝐹)) = (𝐺 DProd (𝑆 ↾ ran 𝐹)))
2321, 22syl5eqr 2808 . . 3 (𝜑 → (𝐺 DProd (𝑆𝐹)) = (𝐺 DProd (𝑆 ↾ ran 𝐹)))
247simprd 482 . . 3 (𝜑 → (𝐺 DProd (𝑆 ↾ ran 𝐹)) ⊆ (𝐺 DProd 𝑆))
2523, 24eqsstrd 3780 . 2 (𝜑 → (𝐺 DProd (𝑆𝐹)) ⊆ (𝐺 DProd 𝑆))
2620, 25jca 555 1 (𝜑 → (𝐺dom DProd (𝑆𝐹) ∧ (𝐺 DProd (𝑆𝐹)) ⊆ (𝐺 DProd 𝑆)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1632   ⊆ wss 3715   class class class wbr 4804  dom cdm 5266  ran crn 5267   ↾ cres 5268   ∘ ccom 5270  ⟶wf 6045  –1-1→wf1 6046  –1-1-onto→wf1o 6048  ‘cfv 6049  (class class class)co 6813  SubGrpcsubg 17789   DProd cdprd 18592 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-om 7231  df-1st 7333  df-2nd 7334  df-supp 7464  df-tpos 7521  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-map 8025  df-ixp 8075  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fsupp 8441  df-oi 8580  df-card 8955  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-2 11271  df-n0 11485  df-z 11570  df-uz 11880  df-fz 12520  df-fzo 12660  df-seq 12996  df-hash 13312  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-0g 16304  df-gsum 16305  df-mre 16448  df-mrc 16449  df-acs 16451  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-mhm 17536  df-submnd 17537  df-grp 17626  df-minusg 17627  df-sbg 17628  df-mulg 17742  df-subg 17792  df-ghm 17859  df-gim 17902  df-cntz 17950  df-oppg 17976  df-cmn 18395  df-dprd 18594 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator