![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dprddomprc | Structured version Visualization version GIF version |
Description: A family of subgroups indexed by a proper class cannot be a family of subgroups for an internal direct product. (Contributed by AV, 13-Jul-2019.) |
Ref | Expression |
---|---|
dprddomprc | ⊢ (dom 𝑆 ∉ V → ¬ 𝐺dom DProd 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nel 2927 | . . 3 ⊢ (dom 𝑆 ∉ V ↔ ¬ dom 𝑆 ∈ V) | |
2 | dmexg 7139 | . . . 4 ⊢ (𝑆 ∈ V → dom 𝑆 ∈ V) | |
3 | 2 | con3i 150 | . . 3 ⊢ (¬ dom 𝑆 ∈ V → ¬ 𝑆 ∈ V) |
4 | 1, 3 | sylbi 207 | . 2 ⊢ (dom 𝑆 ∉ V → ¬ 𝑆 ∈ V) |
5 | reldmdprd 18442 | . . 3 ⊢ Rel dom DProd | |
6 | 5 | brrelex2i 5193 | . 2 ⊢ (𝐺dom DProd 𝑆 → 𝑆 ∈ V) |
7 | 4, 6 | nsyl 135 | 1 ⊢ (dom 𝑆 ∉ V → ¬ 𝐺dom DProd 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2030 ∉ wnel 2926 Vcvv 3231 class class class wbr 4685 dom cdm 5143 DProd cdprd 18438 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-nel 2927 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-xp 5149 df-rel 5150 df-cnv 5151 df-dm 5153 df-rn 5154 df-oprab 6694 df-mpt2 6695 df-dprd 18440 |
This theorem is referenced by: dprddomcld 18446 dprdsubg 18469 |
Copyright terms: Public domain | W3C validator |