Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dpmul1000 Structured version   Visualization version   GIF version

Theorem dpmul1000 29947
Description: Multiply by 1000 a decimal expansion. (Contributed by Thierry Arnoux, 25-Dec-2021.)
Hypotheses
Ref Expression
dpmul1000.a 𝐴 ∈ ℕ0
dpmul1000.b 𝐵 ∈ ℕ0
dpmul1000.c 𝐶 ∈ ℕ0
dpmul1000.d 𝐷 ∈ ℝ
Assertion
Ref Expression
dpmul1000 ((𝐴.𝐵𝐶𝐷) · 1000) = 𝐴𝐵𝐶𝐷

Proof of Theorem dpmul1000
StepHypRef Expression
1 dpmul1000.a . . . . . 6 𝐴 ∈ ℕ0
2 dpmul1000.b . . . . . . . 8 𝐵 ∈ ℕ0
32nn0rei 11505 . . . . . . 7 𝐵 ∈ ℝ
4 dpmul1000.c . . . . . . . . 9 𝐶 ∈ ℕ0
54nn0rei 11505 . . . . . . . 8 𝐶 ∈ ℝ
6 dpmul1000.d . . . . . . . 8 𝐷 ∈ ℝ
7 dp2cl 29927 . . . . . . . 8 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → 𝐶𝐷 ∈ ℝ)
85, 6, 7mp2an 672 . . . . . . 7 𝐶𝐷 ∈ ℝ
9 dp2cl 29927 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶𝐷 ∈ ℝ) → 𝐵𝐶𝐷 ∈ ℝ)
103, 8, 9mp2an 672 . . . . . 6 𝐵𝐶𝐷 ∈ ℝ
11 dpcl 29938 . . . . . 6 ((𝐴 ∈ ℕ0𝐵𝐶𝐷 ∈ ℝ) → (𝐴.𝐵𝐶𝐷) ∈ ℝ)
121, 10, 11mp2an 672 . . . . 5 (𝐴.𝐵𝐶𝐷) ∈ ℝ
1312recni 10254 . . . 4 (𝐴.𝐵𝐶𝐷) ∈ ℂ
14 10nn0 11718 . . . . . 6 10 ∈ ℕ0
15 0nn0 11509 . . . . . 6 0 ∈ ℕ0
1614, 15deccl 11714 . . . . 5 100 ∈ ℕ0
1716nn0cni 11506 . . . 4 100 ∈ ℂ
1814nn0cni 11506 . . . 4 10 ∈ ℂ
1913, 17, 18mulassi 10251 . . 3 (((𝐴.𝐵𝐶𝐷) · 100) · 10) = ((𝐴.𝐵𝐶𝐷) · (100 · 10))
201, 2, 8dpmul100 29945 . . . 4 ((𝐴.𝐵𝐶𝐷) · 100) = 𝐴𝐵𝐶𝐷
2120oveq1i 6803 . . 3 (((𝐴.𝐵𝐶𝐷) · 100) · 10) = (𝐴𝐵𝐶𝐷 · 10)
2216dec0u 11722 . . . . 5 (10 · 100) = 1000
2318, 17, 22mulcomli 10249 . . . 4 (100 · 10) = 1000
2423oveq2i 6804 . . 3 ((𝐴.𝐵𝐶𝐷) · (100 · 10)) = ((𝐴.𝐵𝐶𝐷) · 1000)
2519, 21, 243eqtr3i 2801 . 2 (𝐴𝐵𝐶𝐷 · 10) = ((𝐴.𝐵𝐶𝐷) · 1000)
26 dfdec10 11699 . . . 4 𝐴𝐵𝐶𝐷 = ((10 · 𝐴𝐵) + 𝐶𝐷)
2726oveq1i 6803 . . 3 (𝐴𝐵𝐶𝐷 · 10) = (((10 · 𝐴𝐵) + 𝐶𝐷) · 10)
281, 2deccl 11714 . . . . . 6 𝐴𝐵 ∈ ℕ0
2928nn0cni 11506 . . . . 5 𝐴𝐵 ∈ ℂ
3018, 29mulcli 10247 . . . 4 (10 · 𝐴𝐵) ∈ ℂ
318recni 10254 . . . 4 𝐶𝐷 ∈ ℂ
3230, 31, 18adddiri 10253 . . 3 (((10 · 𝐴𝐵) + 𝐶𝐷) · 10) = (((10 · 𝐴𝐵) · 10) + (𝐶𝐷 · 10))
3328, 4, 6dfdec100 29916 . . . 4 𝐴𝐵𝐶𝐷 = ((100 · 𝐴𝐵) + 𝐶𝐷)
3414dec0u 11722 . . . . . . 7 (10 · 10) = 100
3534oveq1i 6803 . . . . . 6 ((10 · 10) · 𝐴𝐵) = (100 · 𝐴𝐵)
3618, 18, 29mul32i 10434 . . . . . 6 ((10 · 10) · 𝐴𝐵) = ((10 · 𝐴𝐵) · 10)
3735, 36eqtr3i 2795 . . . . 5 (100 · 𝐴𝐵) = ((10 · 𝐴𝐵) · 10)
384, 6dpmul10 29943 . . . . . 6 ((𝐶.𝐷) · 10) = 𝐶𝐷
39 dpval 29937 . . . . . . . 8 ((𝐶 ∈ ℕ0𝐷 ∈ ℝ) → (𝐶.𝐷) = 𝐶𝐷)
404, 6, 39mp2an 672 . . . . . . 7 (𝐶.𝐷) = 𝐶𝐷
4140oveq1i 6803 . . . . . 6 ((𝐶.𝐷) · 10) = (𝐶𝐷 · 10)
4238, 41eqtr3i 2795 . . . . 5 𝐶𝐷 = (𝐶𝐷 · 10)
4337, 42oveq12i 6805 . . . 4 ((100 · 𝐴𝐵) + 𝐶𝐷) = (((10 · 𝐴𝐵) · 10) + (𝐶𝐷 · 10))
4433, 43eqtr2i 2794 . . 3 (((10 · 𝐴𝐵) · 10) + (𝐶𝐷 · 10)) = 𝐴𝐵𝐶𝐷
4527, 32, 443eqtri 2797 . 2 (𝐴𝐵𝐶𝐷 · 10) = 𝐴𝐵𝐶𝐷
4625, 45eqtr3i 2795 1 ((𝐴.𝐵𝐶𝐷) · 1000) = 𝐴𝐵𝐶𝐷
Colors of variables: wff setvar class
Syntax hints:   = wceq 1631  wcel 2145  (class class class)co 6793  cr 10137  0cc0 10138  1c1 10139   + caddc 10141   · cmul 10143  0cn0 11494  cdc 11695  cdp2 29917  .cdp 29935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-dec 11696  df-dp2 29918  df-dp 29936
This theorem is referenced by:  dpmul4  29962
  Copyright terms: Public domain W3C validator