![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dpgti | Structured version Visualization version GIF version |
Description: Comparing a decimal expansions with the next lower integer. (Contributed by Thierry Arnoux, 16-Dec-2021.) |
Ref | Expression |
---|---|
dpgti.a | ⊢ 𝐴 ∈ ℕ0 |
dpgti.b | ⊢ 𝐵 ∈ ℝ+ |
Ref | Expression |
---|---|
dpgti | ⊢ 𝐴 < (𝐴.𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dpgti.a | . . . 4 ⊢ 𝐴 ∈ ℕ0 | |
2 | 1 | nn0rei 11505 | . . 3 ⊢ 𝐴 ∈ ℝ |
3 | dpgti.b | . . . 4 ⊢ 𝐵 ∈ ℝ+ | |
4 | 10re 11719 | . . . . . 6 ⊢ ;10 ∈ ℝ | |
5 | 10pos 11717 | . . . . . 6 ⊢ 0 < ;10 | |
6 | 4, 5 | pm3.2i 447 | . . . . 5 ⊢ (;10 ∈ ℝ ∧ 0 < ;10) |
7 | elrp 12037 | . . . . 5 ⊢ (;10 ∈ ℝ+ ↔ (;10 ∈ ℝ ∧ 0 < ;10)) | |
8 | 6, 7 | mpbir 221 | . . . 4 ⊢ ;10 ∈ ℝ+ |
9 | rpdivcl 12059 | . . . 4 ⊢ ((𝐵 ∈ ℝ+ ∧ ;10 ∈ ℝ+) → (𝐵 / ;10) ∈ ℝ+) | |
10 | 3, 8, 9 | mp2an 672 | . . 3 ⊢ (𝐵 / ;10) ∈ ℝ+ |
11 | ltaddrp 12070 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 / ;10) ∈ ℝ+) → 𝐴 < (𝐴 + (𝐵 / ;10))) | |
12 | 2, 10, 11 | mp2an 672 | . 2 ⊢ 𝐴 < (𝐴 + (𝐵 / ;10)) |
13 | rpre 12042 | . . . 4 ⊢ (𝐵 ∈ ℝ+ → 𝐵 ∈ ℝ) | |
14 | 3, 13 | ax-mp 5 | . . 3 ⊢ 𝐵 ∈ ℝ |
15 | 1, 14 | dpval2 29941 | . 2 ⊢ (𝐴.𝐵) = (𝐴 + (𝐵 / ;10)) |
16 | 12, 15 | breqtrri 4813 | 1 ⊢ 𝐴 < (𝐴.𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 382 ∈ wcel 2145 class class class wbr 4786 (class class class)co 6793 ℝcr 10137 0cc0 10138 1c1 10139 + caddc 10141 < clt 10276 / cdiv 10886 ℕ0cn0 11494 ;cdc 11695 ℝ+crp 12035 .cdp 29935 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-div 10887 df-nn 11223 df-2 11281 df-3 11282 df-4 11283 df-5 11284 df-6 11285 df-7 11286 df-8 11287 df-9 11288 df-n0 11495 df-dec 11696 df-rp 12036 df-dp2 29918 df-dp 29936 |
This theorem is referenced by: hgt750lem 31069 |
Copyright terms: Public domain | W3C validator |