![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dpfrac1OLD | Structured version Visualization version GIF version |
Description: Obsolete version of dpfrac1 29908 as of 9-Sep-2021. (Contributed by David A. Wheeler, 15-May-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
dpfrac1OLD | ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ) → (𝐴.𝐵) = (;𝐴𝐵 / 10)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdp2OLD 29888 | . 2 ⊢ _𝐴𝐵 = (𝐴 + (𝐵 / 10)) | |
2 | dpval 29906 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ) → (𝐴.𝐵) = _𝐴𝐵) | |
3 | nn0cn 11494 | . . 3 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℂ) | |
4 | recn 10218 | . . 3 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℂ) | |
5 | dfdecOLD 11687 | . . . . 5 ⊢ ;𝐴𝐵 = ((10 · 𝐴) + 𝐵) | |
6 | 5 | oveq1i 6823 | . . . 4 ⊢ (;𝐴𝐵 / 10) = (((10 · 𝐴) + 𝐵) / 10) |
7 | 10reOLD 11301 | . . . . . . . 8 ⊢ 10 ∈ ℝ | |
8 | 7 | recni 10244 | . . . . . . 7 ⊢ 10 ∈ ℂ |
9 | mulcl 10212 | . . . . . . 7 ⊢ ((10 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (10 · 𝐴) ∈ ℂ) | |
10 | 8, 9 | mpan 708 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (10 · 𝐴) ∈ ℂ) |
11 | 10posOLD 11315 | . . . . . . . . 9 ⊢ 0 < 10 | |
12 | 7, 11 | gt0ne0ii 10756 | . . . . . . . 8 ⊢ 10 ≠ 0 |
13 | 8, 12 | pm3.2i 470 | . . . . . . 7 ⊢ (10 ∈ ℂ ∧ 10 ≠ 0) |
14 | divdir 10902 | . . . . . . 7 ⊢ (((10 · 𝐴) ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (10 ∈ ℂ ∧ 10 ≠ 0)) → (((10 · 𝐴) + 𝐵) / 10) = (((10 · 𝐴) / 10) + (𝐵 / 10))) | |
15 | 13, 14 | mp3an3 1562 | . . . . . 6 ⊢ (((10 · 𝐴) ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((10 · 𝐴) + 𝐵) / 10) = (((10 · 𝐴) / 10) + (𝐵 / 10))) |
16 | 10, 15 | sylan 489 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((10 · 𝐴) + 𝐵) / 10) = (((10 · 𝐴) / 10) + (𝐵 / 10))) |
17 | divcan3 10903 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ 10 ∈ ℂ ∧ 10 ≠ 0) → ((10 · 𝐴) / 10) = 𝐴) | |
18 | 8, 12, 17 | mp3an23 1565 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → ((10 · 𝐴) / 10) = 𝐴) |
19 | 18 | oveq1d 6828 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (((10 · 𝐴) / 10) + (𝐵 / 10)) = (𝐴 + (𝐵 / 10))) |
20 | 19 | adantr 472 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((10 · 𝐴) / 10) + (𝐵 / 10)) = (𝐴 + (𝐵 / 10))) |
21 | 16, 20 | eqtrd 2794 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((10 · 𝐴) + 𝐵) / 10) = (𝐴 + (𝐵 / 10))) |
22 | 6, 21 | syl5eq 2806 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (;𝐴𝐵 / 10) = (𝐴 + (𝐵 / 10))) |
23 | 3, 4, 22 | syl2an 495 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ) → (;𝐴𝐵 / 10) = (𝐴 + (𝐵 / 10))) |
24 | 1, 2, 23 | 3eqtr4a 2820 | 1 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ) → (𝐴.𝐵) = (;𝐴𝐵 / 10)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 (class class class)co 6813 ℂcc 10126 ℝcr 10127 0cc0 10128 + caddc 10131 · cmul 10133 / cdiv 10876 10c10 11270 ℕ0cn0 11484 ;cdc 11685 _cdp2 29886 .cdp 29904 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-div 10877 df-nn 11213 df-2 11271 df-3 11272 df-4 11273 df-5 11274 df-6 11275 df-7 11276 df-8 11277 df-9 11278 df-10OLD 11279 df-n0 11485 df-dec 11686 df-dp2 29887 df-dp 29905 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |