Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dpfrac1 Structured version   Visualization version   GIF version

Theorem dpfrac1 29930
Description: Prove a simple equivalence involving the decimal point. See df-dp 29927 and dpcl 29929. (Contributed by David A. Wheeler, 15-May-2015.) (Revised by AV, 9-Sep-2021.)
Assertion
Ref Expression
dpfrac1 ((𝐴 ∈ ℕ0𝐵 ∈ ℝ) → (𝐴.𝐵) = (𝐴𝐵 / 10))

Proof of Theorem dpfrac1
StepHypRef Expression
1 df-dp2 29909 . 2 𝐴𝐵 = (𝐴 + (𝐵 / 10))
2 dpval 29928 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℝ) → (𝐴.𝐵) = 𝐴𝐵)
3 nn0cn 11515 . . 3 (𝐴 ∈ ℕ0𝐴 ∈ ℂ)
4 recn 10239 . . 3 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
5 dfdec10 11710 . . . . 5 𝐴𝐵 = ((10 · 𝐴) + 𝐵)
65oveq1i 6825 . . . 4 (𝐴𝐵 / 10) = (((10 · 𝐴) + 𝐵) / 10)
7 10re 11730 . . . . . . . . 9 10 ∈ ℝ
87recni 10265 . . . . . . . 8 10 ∈ ℂ
98a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → 10 ∈ ℂ)
10 id 22 . . . . . . 7 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
119, 10mulcld 10273 . . . . . 6 (𝐴 ∈ ℂ → (10 · 𝐴) ∈ ℂ)
12 10pos 11728 . . . . . . . . 9 0 < 10
137, 12gt0ne0ii 10777 . . . . . . . 8 10 ≠ 0
148, 13pm3.2i 470 . . . . . . 7 (10 ∈ ℂ ∧ 10 ≠ 0)
15 divdir 10923 . . . . . . 7 (((10 · 𝐴) ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (10 ∈ ℂ ∧ 10 ≠ 0)) → (((10 · 𝐴) + 𝐵) / 10) = (((10 · 𝐴) / 10) + (𝐵 / 10)))
1614, 15mp3an3 1562 . . . . . 6 (((10 · 𝐴) ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((10 · 𝐴) + 𝐵) / 10) = (((10 · 𝐴) / 10) + (𝐵 / 10)))
1711, 16sylan 489 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((10 · 𝐴) + 𝐵) / 10) = (((10 · 𝐴) / 10) + (𝐵 / 10)))
18 divcan3 10924 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 10 ∈ ℂ ∧ 10 ≠ 0) → ((10 · 𝐴) / 10) = 𝐴)
198, 13, 18mp3an23 1565 . . . . . . 7 (𝐴 ∈ ℂ → ((10 · 𝐴) / 10) = 𝐴)
2019oveq1d 6830 . . . . . 6 (𝐴 ∈ ℂ → (((10 · 𝐴) / 10) + (𝐵 / 10)) = (𝐴 + (𝐵 / 10)))
2120adantr 472 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((10 · 𝐴) / 10) + (𝐵 / 10)) = (𝐴 + (𝐵 / 10)))
2217, 21eqtrd 2795 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((10 · 𝐴) + 𝐵) / 10) = (𝐴 + (𝐵 / 10)))
236, 22syl5eq 2807 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐵 / 10) = (𝐴 + (𝐵 / 10)))
243, 4, 23syl2an 495 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℝ) → (𝐴𝐵 / 10) = (𝐴 + (𝐵 / 10)))
251, 2, 243eqtr4a 2821 1 ((𝐴 ∈ ℕ0𝐵 ∈ ℝ) → (𝐴.𝐵) = (𝐴𝐵 / 10))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2140  wne 2933  (class class class)co 6815  cc 10147  cr 10148  0cc0 10149  1c1 10150   + caddc 10152   · cmul 10154   / cdiv 10897  0cn0 11505  cdc 11706  cdp2 29908  .cdp 29926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-om 7233  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-er 7914  df-en 8125  df-dom 8126  df-sdom 8127  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-div 10898  df-nn 11234  df-2 11292  df-3 11293  df-4 11294  df-5 11295  df-6 11296  df-7 11297  df-8 11298  df-9 11299  df-n0 11506  df-dec 11707  df-dp2 29909  df-dp 29927
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator