Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dp3mul10 Structured version   Visualization version   GIF version

Theorem dp3mul10 29937
Description: Multiply by 10 a decimal expansion with 3 digits. (Contributed by Thierry Arnoux, 25-Dec-2021.)
Hypotheses
Ref Expression
dp3mul10.a 𝐴 ∈ ℕ0
dp3mul10.b 𝐵 ∈ ℕ0
dp3mul10.c 𝐶 ∈ ℝ
Assertion
Ref Expression
dp3mul10 ((𝐴.𝐵𝐶) · 10) = (𝐴𝐵.𝐶)

Proof of Theorem dp3mul10
StepHypRef Expression
1 dp3mul10.a . . 3 𝐴 ∈ ℕ0
2 dp3mul10.b . . . . 5 𝐵 ∈ ℕ0
32nn0rei 11516 . . . 4 𝐵 ∈ ℝ
4 dp3mul10.c . . . 4 𝐶 ∈ ℝ
5 dp2cl 29918 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵𝐶 ∈ ℝ)
63, 4, 5mp2an 710 . . 3 𝐵𝐶 ∈ ℝ
71, 6dpmul10 29934 . 2 ((𝐴.𝐵𝐶) · 10) = 𝐴𝐵𝐶
8 dfdec10 11710 . 2 𝐴𝐵𝐶 = ((10 · 𝐴) + 𝐵𝐶)
9 10nn 11727 . . . . . . 7 10 ∈ ℕ
109nncni 11243 . . . . . 6 10 ∈ ℂ
111nn0cni 11517 . . . . . 6 𝐴 ∈ ℂ
1210, 11mulcli 10258 . . . . 5 (10 · 𝐴) ∈ ℂ
133recni 10265 . . . . 5 𝐵 ∈ ℂ
144recni 10265 . . . . . 6 𝐶 ∈ ℂ
159nnne0i 11268 . . . . . 6 10 ≠ 0
1614, 10, 15divcli 10980 . . . . 5 (𝐶 / 10) ∈ ℂ
1712, 13, 16addassi 10261 . . . 4 (((10 · 𝐴) + 𝐵) + (𝐶 / 10)) = ((10 · 𝐴) + (𝐵 + (𝐶 / 10)))
18 dfdec10 11710 . . . . 5 𝐴𝐵 = ((10 · 𝐴) + 𝐵)
1918oveq1i 6825 . . . 4 (𝐴𝐵 + (𝐶 / 10)) = (((10 · 𝐴) + 𝐵) + (𝐶 / 10))
20 df-dp2 29909 . . . . 5 𝐵𝐶 = (𝐵 + (𝐶 / 10))
2120oveq2i 6826 . . . 4 ((10 · 𝐴) + 𝐵𝐶) = ((10 · 𝐴) + (𝐵 + (𝐶 / 10)))
2217, 19, 213eqtr4ri 2794 . . 3 ((10 · 𝐴) + 𝐵𝐶) = (𝐴𝐵 + (𝐶 / 10))
231, 2deccl 11725 . . . 4 𝐴𝐵 ∈ ℕ0
2423, 4dpval2 29932 . . 3 (𝐴𝐵.𝐶) = (𝐴𝐵 + (𝐶 / 10))
2522, 24eqtr4i 2786 . 2 ((10 · 𝐴) + 𝐵𝐶) = (𝐴𝐵.𝐶)
267, 8, 253eqtri 2787 1 ((𝐴.𝐵𝐶) · 10) = (𝐴𝐵.𝐶)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1632  wcel 2140  (class class class)co 6815  cr 10148  0cc0 10149  1c1 10150   + caddc 10152   · cmul 10154   / cdiv 10897  0cn0 11505  cdc 11706  cdp2 29908  .cdp 29926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-om 7233  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-er 7914  df-en 8125  df-dom 8126  df-sdom 8127  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-div 10898  df-nn 11234  df-2 11292  df-3 11293  df-4 11294  df-5 11295  df-6 11296  df-7 11297  df-8 11298  df-9 11299  df-n0 11506  df-dec 11707  df-dp2 29909  df-dp 29927
This theorem is referenced by:  dpmul4  29953
  Copyright terms: Public domain W3C validator