![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dp3mul10 | Structured version Visualization version GIF version |
Description: Multiply by 10 a decimal expansion with 3 digits. (Contributed by Thierry Arnoux, 25-Dec-2021.) |
Ref | Expression |
---|---|
dp3mul10.a | ⊢ 𝐴 ∈ ℕ0 |
dp3mul10.b | ⊢ 𝐵 ∈ ℕ0 |
dp3mul10.c | ⊢ 𝐶 ∈ ℝ |
Ref | Expression |
---|---|
dp3mul10 | ⊢ ((𝐴._𝐵𝐶) · ;10) = (;𝐴𝐵.𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dp3mul10.a | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
2 | dp3mul10.b | . . . . 5 ⊢ 𝐵 ∈ ℕ0 | |
3 | 2 | nn0rei 11516 | . . . 4 ⊢ 𝐵 ∈ ℝ |
4 | dp3mul10.c | . . . 4 ⊢ 𝐶 ∈ ℝ | |
5 | dp2cl 29918 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → _𝐵𝐶 ∈ ℝ) | |
6 | 3, 4, 5 | mp2an 710 | . . 3 ⊢ _𝐵𝐶 ∈ ℝ |
7 | 1, 6 | dpmul10 29934 | . 2 ⊢ ((𝐴._𝐵𝐶) · ;10) = ;𝐴_𝐵𝐶 |
8 | dfdec10 11710 | . 2 ⊢ ;𝐴_𝐵𝐶 = ((;10 · 𝐴) + _𝐵𝐶) | |
9 | 10nn 11727 | . . . . . . 7 ⊢ ;10 ∈ ℕ | |
10 | 9 | nncni 11243 | . . . . . 6 ⊢ ;10 ∈ ℂ |
11 | 1 | nn0cni 11517 | . . . . . 6 ⊢ 𝐴 ∈ ℂ |
12 | 10, 11 | mulcli 10258 | . . . . 5 ⊢ (;10 · 𝐴) ∈ ℂ |
13 | 3 | recni 10265 | . . . . 5 ⊢ 𝐵 ∈ ℂ |
14 | 4 | recni 10265 | . . . . . 6 ⊢ 𝐶 ∈ ℂ |
15 | 9 | nnne0i 11268 | . . . . . 6 ⊢ ;10 ≠ 0 |
16 | 14, 10, 15 | divcli 10980 | . . . . 5 ⊢ (𝐶 / ;10) ∈ ℂ |
17 | 12, 13, 16 | addassi 10261 | . . . 4 ⊢ (((;10 · 𝐴) + 𝐵) + (𝐶 / ;10)) = ((;10 · 𝐴) + (𝐵 + (𝐶 / ;10))) |
18 | dfdec10 11710 | . . . . 5 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
19 | 18 | oveq1i 6825 | . . . 4 ⊢ (;𝐴𝐵 + (𝐶 / ;10)) = (((;10 · 𝐴) + 𝐵) + (𝐶 / ;10)) |
20 | df-dp2 29909 | . . . . 5 ⊢ _𝐵𝐶 = (𝐵 + (𝐶 / ;10)) | |
21 | 20 | oveq2i 6826 | . . . 4 ⊢ ((;10 · 𝐴) + _𝐵𝐶) = ((;10 · 𝐴) + (𝐵 + (𝐶 / ;10))) |
22 | 17, 19, 21 | 3eqtr4ri 2794 | . . 3 ⊢ ((;10 · 𝐴) + _𝐵𝐶) = (;𝐴𝐵 + (𝐶 / ;10)) |
23 | 1, 2 | deccl 11725 | . . . 4 ⊢ ;𝐴𝐵 ∈ ℕ0 |
24 | 23, 4 | dpval2 29932 | . . 3 ⊢ (;𝐴𝐵.𝐶) = (;𝐴𝐵 + (𝐶 / ;10)) |
25 | 22, 24 | eqtr4i 2786 | . 2 ⊢ ((;10 · 𝐴) + _𝐵𝐶) = (;𝐴𝐵.𝐶) |
26 | 7, 8, 25 | 3eqtri 2787 | 1 ⊢ ((𝐴._𝐵𝐶) · ;10) = (;𝐴𝐵.𝐶) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 ∈ wcel 2140 (class class class)co 6815 ℝcr 10148 0cc0 10149 1c1 10150 + caddc 10152 · cmul 10154 / cdiv 10897 ℕ0cn0 11505 ;cdc 11706 _cdp2 29908 .cdp 29926 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 ax-pre-mulgt0 10226 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rmo 3059 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-om 7233 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-er 7914 df-en 8125 df-dom 8126 df-sdom 8127 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-sub 10481 df-neg 10482 df-div 10898 df-nn 11234 df-2 11292 df-3 11293 df-4 11294 df-5 11295 df-6 11296 df-7 11297 df-8 11298 df-9 11299 df-n0 11506 df-dec 11707 df-dp2 29909 df-dp 29927 |
This theorem is referenced by: dpmul4 29953 |
Copyright terms: Public domain | W3C validator |