Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dp2ltc Structured version   Visualization version   GIF version

Theorem dp2ltc 29934
 Description: Comparing two decimal expansions (unequal higher places). (Contributed by Thierry Arnoux, 16-Dec-2021.)
Hypotheses
Ref Expression
dp2lt.a 𝐴 ∈ ℕ0
dp2lt.b 𝐵 ∈ ℝ+
dp2ltc.c 𝐶 ∈ ℕ0
dp2ltc.d 𝐷 ∈ ℝ+
dp2ltc.s 𝐵 < 10
dp2ltc.l 𝐴 < 𝐶
Assertion
Ref Expression
dp2ltc 𝐴𝐵 < 𝐶𝐷

Proof of Theorem dp2ltc
StepHypRef Expression
1 dp2ltc.s . . . . . 6 𝐵 < 10
2 rpssre 12046 . . . . . . . 8 + ⊆ ℝ
3 dp2lt.b . . . . . . . 8 𝐵 ∈ ℝ+
42, 3sselii 3749 . . . . . . 7 𝐵 ∈ ℝ
5 10re 11724 . . . . . . . 8 10 ∈ ℝ
6 10pos 11722 . . . . . . . 8 0 < 10
7 elrp 12037 . . . . . . . 8 (10 ∈ ℝ+ ↔ (10 ∈ ℝ ∧ 0 < 10))
85, 6, 7mpbir2an 690 . . . . . . 7 10 ∈ ℝ+
9 divlt1lt 12102 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 10 ∈ ℝ+) → ((𝐵 / 10) < 1 ↔ 𝐵 < 10))
104, 8, 9mp2an 672 . . . . . 6 ((𝐵 / 10) < 1 ↔ 𝐵 < 10)
111, 10mpbir 221 . . . . 5 (𝐵 / 10) < 1
125, 6gt0ne0ii 10770 . . . . . . 7 10 ≠ 0
134, 5, 12redivcli 10998 . . . . . 6 (𝐵 / 10) ∈ ℝ
14 1re 10245 . . . . . 6 1 ∈ ℝ
15 dp2lt.a . . . . . . 7 𝐴 ∈ ℕ0
1615nn0rei 11510 . . . . . 6 𝐴 ∈ ℝ
17 ltadd2 10347 . . . . . 6 (((𝐵 / 10) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵 / 10) < 1 ↔ (𝐴 + (𝐵 / 10)) < (𝐴 + 1)))
1813, 14, 16, 17mp3an 1572 . . . . 5 ((𝐵 / 10) < 1 ↔ (𝐴 + (𝐵 / 10)) < (𝐴 + 1))
1911, 18mpbi 220 . . . 4 (𝐴 + (𝐵 / 10)) < (𝐴 + 1)
20 dp2ltc.l . . . . 5 𝐴 < 𝐶
2115nn0zi 11609 . . . . . 6 𝐴 ∈ ℤ
22 dp2ltc.c . . . . . . 7 𝐶 ∈ ℕ0
2322nn0zi 11609 . . . . . 6 𝐶 ∈ ℤ
24 zltp1le 11634 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 < 𝐶 ↔ (𝐴 + 1) ≤ 𝐶))
2521, 23, 24mp2an 672 . . . . 5 (𝐴 < 𝐶 ↔ (𝐴 + 1) ≤ 𝐶)
2620, 25mpbi 220 . . . 4 (𝐴 + 1) ≤ 𝐶
2716, 13readdcli 10259 . . . . 5 (𝐴 + (𝐵 / 10)) ∈ ℝ
2816, 14readdcli 10259 . . . . 5 (𝐴 + 1) ∈ ℝ
2922nn0rei 11510 . . . . 5 𝐶 ∈ ℝ
3027, 28, 29ltletri 10371 . . . 4 (((𝐴 + (𝐵 / 10)) < (𝐴 + 1) ∧ (𝐴 + 1) ≤ 𝐶) → (𝐴 + (𝐵 / 10)) < 𝐶)
3119, 26, 30mp2an 672 . . 3 (𝐴 + (𝐵 / 10)) < 𝐶
32 dp2ltc.d . . . . . 6 𝐷 ∈ ℝ+
3332, 8pm3.2i 456 . . . . 5 (𝐷 ∈ ℝ+10 ∈ ℝ+)
34 rpdivcl 12059 . . . . 5 ((𝐷 ∈ ℝ+10 ∈ ℝ+) → (𝐷 / 10) ∈ ℝ+)
3533, 34ax-mp 5 . . . 4 (𝐷 / 10) ∈ ℝ+
36 ltaddrp 12070 . . . 4 ((𝐶 ∈ ℝ ∧ (𝐷 / 10) ∈ ℝ+) → 𝐶 < (𝐶 + (𝐷 / 10)))
3729, 35, 36mp2an 672 . . 3 𝐶 < (𝐶 + (𝐷 / 10))
382, 32sselii 3749 . . . . . 6 𝐷 ∈ ℝ
3938, 5, 12redivcli 10998 . . . . 5 (𝐷 / 10) ∈ ℝ
4029, 39readdcli 10259 . . . 4 (𝐶 + (𝐷 / 10)) ∈ ℝ
4127, 29, 40lttri 10369 . . 3 (((𝐴 + (𝐵 / 10)) < 𝐶𝐶 < (𝐶 + (𝐷 / 10))) → (𝐴 + (𝐵 / 10)) < (𝐶 + (𝐷 / 10)))
4231, 37, 41mp2an 672 . 2 (𝐴 + (𝐵 / 10)) < (𝐶 + (𝐷 / 10))
43 df-dp2 29918 . 2 𝐴𝐵 = (𝐴 + (𝐵 / 10))
44 df-dp2 29918 . 2 𝐶𝐷 = (𝐶 + (𝐷 / 10))
4542, 43, 443brtr4i 4817 1 𝐴𝐵 < 𝐶𝐷
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 196   ∧ wa 382   ∈ wcel 2145   class class class wbr 4787  (class class class)co 6796  ℝcr 10141  0cc0 10142  1c1 10143   + caddc 10145   < clt 10280   ≤ cle 10281   / cdiv 10890  ℕ0cn0 11499  ℤcz 11584  ;cdc 11700  ℝ+crp 12035  _cdp2 29917 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-div 10891  df-nn 11227  df-2 11285  df-3 11286  df-4 11287  df-5 11288  df-6 11289  df-7 11290  df-8 11291  df-9 11292  df-n0 11500  df-z 11585  df-dec 11701  df-rp 12036  df-dp2 29918 This theorem is referenced by:  dpltc  29955
 Copyright terms: Public domain W3C validator