![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dp20u | Structured version Visualization version GIF version |
Description: Add a zero in the tenths (lower) place. (Contributed by Thierry Arnoux, 16-Dec-2021.) |
Ref | Expression |
---|---|
dp20u.1 | ⊢ 𝐴 ∈ ℕ0 |
Ref | Expression |
---|---|
dp20u | ⊢ _𝐴0 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dp2 29918 | . 2 ⊢ _𝐴0 = (𝐴 + (0 / ;10)) | |
2 | 10nn0 11723 | . . . . . 6 ⊢ ;10 ∈ ℕ0 | |
3 | 2 | nn0rei 11510 | . . . . 5 ⊢ ;10 ∈ ℝ |
4 | 3 | recni 10258 | . . . 4 ⊢ ;10 ∈ ℂ |
5 | 0re 10246 | . . . . 5 ⊢ 0 ∈ ℝ | |
6 | 10pos 11722 | . . . . 5 ⊢ 0 < ;10 | |
7 | 5, 6 | gtneii 10355 | . . . 4 ⊢ ;10 ≠ 0 |
8 | div0 10921 | . . . 4 ⊢ ((;10 ∈ ℂ ∧ ;10 ≠ 0) → (0 / ;10) = 0) | |
9 | 4, 7, 8 | mp2an 672 | . . 3 ⊢ (0 / ;10) = 0 |
10 | 9 | oveq2i 6807 | . 2 ⊢ (𝐴 + (0 / ;10)) = (𝐴 + 0) |
11 | dp20u.1 | . . . 4 ⊢ 𝐴 ∈ ℕ0 | |
12 | 11 | nn0cni 11511 | . . 3 ⊢ 𝐴 ∈ ℂ |
13 | 12 | addid1i 10429 | . 2 ⊢ (𝐴 + 0) = 𝐴 |
14 | 1, 10, 13 | 3eqtri 2797 | 1 ⊢ _𝐴0 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1631 ∈ wcel 2145 ≠ wne 2943 (class class class)co 6796 ℂcc 10140 0cc0 10142 1c1 10143 + caddc 10145 / cdiv 10890 ℕ0cn0 11499 ;cdc 11700 _cdp2 29917 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-om 7217 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-er 7900 df-en 8114 df-dom 8115 df-sdom 8116 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-div 10891 df-nn 11227 df-2 11285 df-3 11286 df-4 11287 df-5 11288 df-6 11289 df-7 11290 df-8 11291 df-9 11292 df-n0 11500 df-dec 11701 df-dp2 29918 |
This theorem is referenced by: rpdp2cl2 29930 dp0u 29949 1mhdrd 29964 hgt750lem2 31070 |
Copyright terms: Public domain | W3C validator |