![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > domtr | Structured version Visualization version GIF version |
Description: Transitivity of dominance relation. Theorem 17 of [Suppes] p. 94. (Contributed by NM, 4-Jun-1998.) (Revised by Mario Carneiro, 15-Nov-2014.) |
Ref | Expression |
---|---|
domtr | ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reldom 8003 | . 2 ⊢ Rel ≼ | |
2 | vex 3234 | . . . 4 ⊢ 𝑦 ∈ V | |
3 | 2 | brdom 8009 | . . 3 ⊢ (𝑥 ≼ 𝑦 ↔ ∃𝑔 𝑔:𝑥–1-1→𝑦) |
4 | vex 3234 | . . . 4 ⊢ 𝑧 ∈ V | |
5 | 4 | brdom 8009 | . . 3 ⊢ (𝑦 ≼ 𝑧 ↔ ∃𝑓 𝑓:𝑦–1-1→𝑧) |
6 | eeanv 2218 | . . . 4 ⊢ (∃𝑔∃𝑓(𝑔:𝑥–1-1→𝑦 ∧ 𝑓:𝑦–1-1→𝑧) ↔ (∃𝑔 𝑔:𝑥–1-1→𝑦 ∧ ∃𝑓 𝑓:𝑦–1-1→𝑧)) | |
7 | f1co 6148 | . . . . . . . 8 ⊢ ((𝑓:𝑦–1-1→𝑧 ∧ 𝑔:𝑥–1-1→𝑦) → (𝑓 ∘ 𝑔):𝑥–1-1→𝑧) | |
8 | 7 | ancoms 468 | . . . . . . 7 ⊢ ((𝑔:𝑥–1-1→𝑦 ∧ 𝑓:𝑦–1-1→𝑧) → (𝑓 ∘ 𝑔):𝑥–1-1→𝑧) |
9 | vex 3234 | . . . . . . . . 9 ⊢ 𝑓 ∈ V | |
10 | vex 3234 | . . . . . . . . 9 ⊢ 𝑔 ∈ V | |
11 | 9, 10 | coex 7160 | . . . . . . . 8 ⊢ (𝑓 ∘ 𝑔) ∈ V |
12 | f1eq1 6134 | . . . . . . . 8 ⊢ (ℎ = (𝑓 ∘ 𝑔) → (ℎ:𝑥–1-1→𝑧 ↔ (𝑓 ∘ 𝑔):𝑥–1-1→𝑧)) | |
13 | 11, 12 | spcev 3331 | . . . . . . 7 ⊢ ((𝑓 ∘ 𝑔):𝑥–1-1→𝑧 → ∃ℎ ℎ:𝑥–1-1→𝑧) |
14 | 8, 13 | syl 17 | . . . . . 6 ⊢ ((𝑔:𝑥–1-1→𝑦 ∧ 𝑓:𝑦–1-1→𝑧) → ∃ℎ ℎ:𝑥–1-1→𝑧) |
15 | 4 | brdom 8009 | . . . . . 6 ⊢ (𝑥 ≼ 𝑧 ↔ ∃ℎ ℎ:𝑥–1-1→𝑧) |
16 | 14, 15 | sylibr 224 | . . . . 5 ⊢ ((𝑔:𝑥–1-1→𝑦 ∧ 𝑓:𝑦–1-1→𝑧) → 𝑥 ≼ 𝑧) |
17 | 16 | exlimivv 1900 | . . . 4 ⊢ (∃𝑔∃𝑓(𝑔:𝑥–1-1→𝑦 ∧ 𝑓:𝑦–1-1→𝑧) → 𝑥 ≼ 𝑧) |
18 | 6, 17 | sylbir 225 | . . 3 ⊢ ((∃𝑔 𝑔:𝑥–1-1→𝑦 ∧ ∃𝑓 𝑓:𝑦–1-1→𝑧) → 𝑥 ≼ 𝑧) |
19 | 3, 5, 18 | syl2anb 495 | . 2 ⊢ ((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑧) → 𝑥 ≼ 𝑧) |
20 | 1, 19 | vtoclr 5198 | 1 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∃wex 1744 class class class wbr 4685 ∘ ccom 5147 –1-1→wf1 5923 ≼ cdom 7995 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-dom 7999 |
This theorem is referenced by: endomtr 8055 domentr 8056 cnvct 8074 ssct 8082 undom 8089 sdomdomtr 8134 domsdomtr 8136 xpen 8164 unxpdom2 8209 sucxpdom 8210 fidomdm 8284 hartogs 8490 harword 8511 unxpwdom 8535 harcard 8842 infxpenlem 8874 xpct 8877 indcardi 8902 fodomfi2 8921 infpwfien 8923 inffien 8924 cdadom3 9048 cdainf 9052 infcda1 9053 cdalepw 9056 unctb 9065 infcdaabs 9066 infcda 9068 infdif 9069 infdif2 9070 infxp 9075 infmap2 9078 fictb 9105 cfslb2n 9128 isfin32i 9225 fin1a2lem12 9271 hsmexlem1 9286 dmct 9384 brdom3 9388 brdom5 9389 brdom4 9390 imadomg 9394 fimact 9395 fnct 9397 mptct 9398 iundomg 9401 uniimadom 9404 ondomon 9423 unirnfdomd 9427 alephval2 9432 iunctb 9434 alephexp1 9439 alephreg 9442 cfpwsdom 9444 gchdomtri 9489 canthnum 9509 canthp1lem1 9512 canthp1 9514 pwfseqlem5 9523 pwxpndom2 9525 pwxpndom 9526 pwcdandom 9527 gchcdaidm 9528 gchxpidm 9529 gchpwdom 9530 gchaclem 9538 gchhar 9539 inar1 9635 rankcf 9637 grudomon 9677 grothac 9690 rpnnen 15000 cctop 20858 1stcfb 21296 2ndcredom 21301 2ndc1stc 21302 1stcrestlem 21303 2ndcctbss 21306 2ndcdisj2 21308 2ndcomap 21309 2ndcsep 21310 dis2ndc 21311 hauspwdom 21352 tx1stc 21501 tx2ndc 21502 met2ndci 22374 opnreen 22681 rectbntr0 22682 uniiccdif 23392 dyadmbl 23414 opnmblALT 23417 mbfimaopnlem 23467 abrexdomjm 29471 mptctf 29623 locfinreflem 30035 sigaclci 30323 omsmeas 30513 sibfof 30530 abrexdom 33655 heiborlem3 33742 ttac 37920 idomsubgmo 38093 uzct 39546 omeiunle 41052 smfaddlem2 41293 smflimlem6 41305 smfmullem4 41322 smfpimbor1lem1 41326 |
Copyright terms: Public domain | W3C validator |