![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > domnsym | Structured version Visualization version GIF version |
Description: Theorem 22(i) of [Suppes] p. 97. (Contributed by NM, 10-Jun-1998.) |
Ref | Expression |
---|---|
domnsym | ⊢ (𝐴 ≼ 𝐵 → ¬ 𝐵 ≺ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brdom2 8151 | . 2 ⊢ (𝐴 ≼ 𝐵 ↔ (𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵)) | |
2 | sdomnsym 8250 | . . 3 ⊢ (𝐴 ≺ 𝐵 → ¬ 𝐵 ≺ 𝐴) | |
3 | sdomnen 8150 | . . . 4 ⊢ (𝐵 ≺ 𝐴 → ¬ 𝐵 ≈ 𝐴) | |
4 | ensym 8170 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
5 | 3, 4 | nsyl3 133 | . . 3 ⊢ (𝐴 ≈ 𝐵 → ¬ 𝐵 ≺ 𝐴) |
6 | 2, 5 | jaoi 393 | . 2 ⊢ ((𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵) → ¬ 𝐵 ≺ 𝐴) |
7 | 1, 6 | sylbi 207 | 1 ⊢ (𝐴 ≼ 𝐵 → ¬ 𝐵 ≺ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 382 class class class wbr 4804 ≈ cen 8118 ≼ cdom 8119 ≺ csdm 8120 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 |
This theorem is referenced by: sdom0 8257 sdomdomtr 8258 domsdomtr 8260 sdomdif 8273 onsdominel 8274 nndomo 8319 sdom1 8325 fofinf1o 8406 carddom2 8993 fidomtri 9009 fidomtri2 9010 infxpenlem 9026 alephordi 9087 infdif 9223 infdif2 9224 cfslbn 9281 cfslb2n 9282 fincssdom 9337 fin45 9406 domtriom 9457 alephval2 9586 alephreg 9596 pwcfsdom 9597 cfpwsdom 9598 pwfseqlem3 9674 gchpwdom 9684 gchaleph 9685 hargch 9687 gchhar 9693 winainflem 9707 rankcf 9791 tskcard 9795 vdwlem12 15898 odinf 18180 rectbntr0 22836 erdszelem10 31489 finminlem 32618 fphpd 37882 |
Copyright terms: Public domain | W3C validator |