![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > domnnzr | Structured version Visualization version GIF version |
Description: A domain is a nonzero ring. (Contributed by Mario Carneiro, 28-Mar-2015.) |
Ref | Expression |
---|---|
domnnzr | ⊢ (𝑅 ∈ Domn → 𝑅 ∈ NzRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2771 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | eqid 2771 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
3 | eqid 2771 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
4 | 1, 2, 3 | isdomn 19509 | . 2 ⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)𝑦) = (0g‘𝑅) → (𝑥 = (0g‘𝑅) ∨ 𝑦 = (0g‘𝑅))))) |
5 | 4 | simplbi 485 | 1 ⊢ (𝑅 ∈ Domn → 𝑅 ∈ NzRing) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 836 = wceq 1631 ∈ wcel 2145 ∀wral 3061 ‘cfv 6031 (class class class)co 6793 Basecbs 16064 .rcmulr 16150 0gc0g 16308 NzRingcnzr 19472 Domncdomn 19495 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-nul 4923 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-iota 5994 df-fv 6039 df-ov 6796 df-domn 19499 |
This theorem is referenced by: domnring 19511 opprdomn 19516 abvn0b 19517 fidomndrng 19522 domnchr 20095 znidomb 20125 nrgdomn 22695 ply1domn 24103 fta1glem1 24145 fta1glem2 24146 fta1b 24149 lgsqrlem4 25295 idomrootle 38299 deg1mhm 38311 |
Copyright terms: Public domain | W3C validator |