![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > domfin4 | Structured version Visualization version GIF version |
Description: A set dominated by a Dedekind finite set is Dedekind finite. (Contributed by Mario Carneiro, 16-May-2015.) |
Ref | Expression |
---|---|
domfin4 | ⊢ ((𝐴 ∈ FinIV ∧ 𝐵 ≼ 𝐴) → 𝐵 ∈ FinIV) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | domeng 8137 | . . 3 ⊢ (𝐴 ∈ FinIV → (𝐵 ≼ 𝐴 ↔ ∃𝑥(𝐵 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴))) | |
2 | 1 | biimpa 502 | . 2 ⊢ ((𝐴 ∈ FinIV ∧ 𝐵 ≼ 𝐴) → ∃𝑥(𝐵 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴)) |
3 | ensym 8172 | . . . 4 ⊢ (𝐵 ≈ 𝑥 → 𝑥 ≈ 𝐵) | |
4 | 3 | ad2antrl 766 | . . 3 ⊢ (((𝐴 ∈ FinIV ∧ 𝐵 ≼ 𝐴) ∧ (𝐵 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴)) → 𝑥 ≈ 𝐵) |
5 | ssfin4 9344 | . . . 4 ⊢ ((𝐴 ∈ FinIV ∧ 𝑥 ⊆ 𝐴) → 𝑥 ∈ FinIV) | |
6 | 5 | ad2ant2rl 802 | . . 3 ⊢ (((𝐴 ∈ FinIV ∧ 𝐵 ≼ 𝐴) ∧ (𝐵 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴)) → 𝑥 ∈ FinIV) |
7 | fin4en1 9343 | . . 3 ⊢ (𝑥 ≈ 𝐵 → (𝑥 ∈ FinIV → 𝐵 ∈ FinIV)) | |
8 | 4, 6, 7 | sylc 65 | . 2 ⊢ (((𝐴 ∈ FinIV ∧ 𝐵 ≼ 𝐴) ∧ (𝐵 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴)) → 𝐵 ∈ FinIV) |
9 | 2, 8 | exlimddv 2012 | 1 ⊢ ((𝐴 ∈ FinIV ∧ 𝐵 ≼ 𝐴) → 𝐵 ∈ FinIV) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∃wex 1853 ∈ wcel 2139 ⊆ wss 3715 class class class wbr 4804 ≈ cen 8120 ≼ cdom 8121 FinIVcfin4 9314 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-er 7913 df-en 8124 df-dom 8125 df-fin4 9321 |
This theorem is referenced by: infpssALT 9347 |
Copyright terms: Public domain | W3C validator |