![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > domep | Structured version Visualization version GIF version |
Description: The domain of the epsilon relation is the universe. (Contributed by Scott Fenton, 27-Oct-2010.) |
Ref | Expression |
---|---|
domep | ⊢ dom E = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equid 2094 | . . . 4 ⊢ 𝑥 = 𝑥 | |
2 | el 4996 | . . . . 5 ⊢ ∃𝑦 𝑥 ∈ 𝑦 | |
3 | epel 5182 | . . . . . 6 ⊢ (𝑥 E 𝑦 ↔ 𝑥 ∈ 𝑦) | |
4 | 3 | exbii 1923 | . . . . 5 ⊢ (∃𝑦 𝑥 E 𝑦 ↔ ∃𝑦 𝑥 ∈ 𝑦) |
5 | 2, 4 | mpbir 221 | . . . 4 ⊢ ∃𝑦 𝑥 E 𝑦 |
6 | 1, 5 | 2th 254 | . . 3 ⊢ (𝑥 = 𝑥 ↔ ∃𝑦 𝑥 E 𝑦) |
7 | 6 | abbii 2877 | . 2 ⊢ {𝑥 ∣ 𝑥 = 𝑥} = {𝑥 ∣ ∃𝑦 𝑥 E 𝑦} |
8 | df-v 3342 | . 2 ⊢ V = {𝑥 ∣ 𝑥 = 𝑥} | |
9 | df-dm 5276 | . 2 ⊢ dom E = {𝑥 ∣ ∃𝑦 𝑥 E 𝑦} | |
10 | 7, 8, 9 | 3eqtr4ri 2793 | 1 ⊢ dom E = V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 ∃wex 1853 {cab 2746 Vcvv 3340 class class class wbr 4804 E cep 5178 dom cdm 5266 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-br 4805 df-opab 4865 df-eprel 5179 df-dm 5276 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |