![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > domentr | Structured version Visualization version GIF version |
Description: Transitivity of dominance and equinumerosity. (Contributed by NM, 7-Jun-1998.) |
Ref | Expression |
---|---|
domentr | ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≼ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | endom 8024 | . 2 ⊢ (𝐵 ≈ 𝐶 → 𝐵 ≼ 𝐶) | |
2 | domtr 8050 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | |
3 | 1, 2 | sylan2 490 | 1 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≼ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 class class class wbr 4685 ≈ cen 7994 ≼ cdom 7995 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-f1o 5933 df-en 7998 df-dom 7999 |
This theorem is referenced by: domdifsn 8084 xpdom1g 8098 domunsncan 8101 sdomdomtr 8134 domen2 8144 mapdom2 8172 php 8185 unxpdom2 8209 sucxpdom 8210 xpfir 8223 fodomfi 8280 cardsdomelir 8837 infxpenlem 8874 xpct 8877 infpwfien 8923 inffien 8924 mappwen 8973 iunfictbso 8975 cdaxpdom 9049 cdainflem 9051 cdainf 9052 cdalepw 9056 ficardun2 9063 unctb 9065 infcdaabs 9066 infunabs 9067 infcda 9068 infdif 9069 infxpdom 9071 pwcdadom 9076 infmap2 9078 fictb 9105 cfslb 9126 fin1a2lem11 9270 fnct 9397 unirnfdomd 9427 iunctb 9434 alephreg 9442 cfpwsdom 9444 gchdomtri 9489 canthp1lem1 9512 pwfseqlem5 9523 pwxpndom 9526 gchcdaidm 9528 gchxpidm 9529 gchpwdom 9530 gchhar 9539 inttsk 9634 inar1 9635 tskcard 9641 znnen 14985 qnnen 14986 rpnnen 15000 rexpen 15001 aleph1irr 15019 cygctb 18339 1stcfb 21296 2ndcredom 21301 2ndcctbss 21306 hauspwdom 21352 tx1stc 21501 tx2ndc 21502 met1stc 22373 met2ndci 22374 re2ndc 22651 opnreen 22681 ovolctb2 23306 ovolfi 23308 uniiccdif 23392 dyadmbl 23414 opnmblALT 23417 vitali 23427 mbfimaopnlem 23467 mbfsup 23476 aannenlem3 24130 dmvlsiga 30320 sigapildsys 30353 omssubadd 30490 carsgclctunlem3 30510 finminlem 32437 phpreu 33523 lindsdom 33533 mblfinlem1 33576 pellexlem4 37713 pellexlem5 37714 nnfoctb 39527 ioonct 40082 subsaliuncl 40894 caragenunicl 41059 aacllem 42875 |
Copyright terms: Public domain | W3C validator |