![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dochsscl | Structured version Visualization version GIF version |
Description: If a set of vectors is included in a closed set, so is its closure. (Contributed by NM, 17-Jun-2015.) |
Ref | Expression |
---|---|
dochsscl.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dochsscl.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dochsscl.v | ⊢ 𝑉 = (Base‘𝑈) |
dochsscl.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
dochsscl.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
dochsscl.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
dochsscl.x | ⊢ (𝜑 → 𝑋 ⊆ 𝑉) |
dochsscl.y | ⊢ (𝜑 → 𝑌 ∈ ran 𝐼) |
Ref | Expression |
---|---|
dochsscl | ⊢ (𝜑 → (𝑋 ⊆ 𝑌 ↔ ( ⊥ ‘( ⊥ ‘𝑋)) ⊆ 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dochsscl.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | 1 | adantr 472 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ⊆ 𝑌) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
3 | dochsscl.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ⊆ 𝑉) | |
4 | 3 | adantr 472 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ⊆ 𝑌) → 𝑋 ⊆ 𝑉) |
5 | dochsscl.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
6 | dochsscl.u | . . . . . 6 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
7 | dochsscl.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑈) | |
8 | dochsscl.o | . . . . . 6 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
9 | 5, 6, 7, 8 | dochssv 37164 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → ( ⊥ ‘𝑋) ⊆ 𝑉) |
10 | 2, 4, 9 | syl2anc 696 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ⊆ 𝑌) → ( ⊥ ‘𝑋) ⊆ 𝑉) |
11 | dochsscl.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ ran 𝐼) | |
12 | dochsscl.i | . . . . . . . 8 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
13 | 5, 6, 12, 7 | dihrnss 37087 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ∈ ran 𝐼) → 𝑌 ⊆ 𝑉) |
14 | 1, 11, 13 | syl2anc 696 | . . . . . 6 ⊢ (𝜑 → 𝑌 ⊆ 𝑉) |
15 | 14 | adantr 472 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ⊆ 𝑌) → 𝑌 ⊆ 𝑉) |
16 | simpr 479 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ⊆ 𝑌) → 𝑋 ⊆ 𝑌) | |
17 | 5, 6, 7, 8 | dochss 37174 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌) → ( ⊥ ‘𝑌) ⊆ ( ⊥ ‘𝑋)) |
18 | 2, 15, 16, 17 | syl3anc 1477 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ⊆ 𝑌) → ( ⊥ ‘𝑌) ⊆ ( ⊥ ‘𝑋)) |
19 | 5, 6, 7, 8 | dochss 37174 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ( ⊥ ‘𝑋) ⊆ 𝑉 ∧ ( ⊥ ‘𝑌) ⊆ ( ⊥ ‘𝑋)) → ( ⊥ ‘( ⊥ ‘𝑋)) ⊆ ( ⊥ ‘( ⊥ ‘𝑌))) |
20 | 2, 10, 18, 19 | syl3anc 1477 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ⊆ 𝑌) → ( ⊥ ‘( ⊥ ‘𝑋)) ⊆ ( ⊥ ‘( ⊥ ‘𝑌))) |
21 | 11 | adantr 472 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ⊆ 𝑌) → 𝑌 ∈ ran 𝐼) |
22 | 5, 12, 8 | dochoc 37176 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ∈ ran 𝐼) → ( ⊥ ‘( ⊥ ‘𝑌)) = 𝑌) |
23 | 2, 21, 22 | syl2anc 696 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ⊆ 𝑌) → ( ⊥ ‘( ⊥ ‘𝑌)) = 𝑌) |
24 | 20, 23 | sseqtrd 3782 | . 2 ⊢ ((𝜑 ∧ 𝑋 ⊆ 𝑌) → ( ⊥ ‘( ⊥ ‘𝑋)) ⊆ 𝑌) |
25 | 5, 6, 7, 8 | dochocss 37175 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → 𝑋 ⊆ ( ⊥ ‘( ⊥ ‘𝑋))) |
26 | 1, 3, 25 | syl2anc 696 | . . 3 ⊢ (𝜑 → 𝑋 ⊆ ( ⊥ ‘( ⊥ ‘𝑋))) |
27 | sstr 3752 | . . 3 ⊢ ((𝑋 ⊆ ( ⊥ ‘( ⊥ ‘𝑋)) ∧ ( ⊥ ‘( ⊥ ‘𝑋)) ⊆ 𝑌) → 𝑋 ⊆ 𝑌) | |
28 | 26, 27 | sylan 489 | . 2 ⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) ⊆ 𝑌) → 𝑋 ⊆ 𝑌) |
29 | 24, 28 | impbida 913 | 1 ⊢ (𝜑 → (𝑋 ⊆ 𝑌 ↔ ( ⊥ ‘( ⊥ ‘𝑋)) ⊆ 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ⊆ wss 3715 ran crn 5267 ‘cfv 6049 Basecbs 16079 HLchlt 35158 LHypclh 35791 DVecHcdvh 36887 DIsoHcdih 37037 ocHcoch 37156 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 ax-riotaBAD 34760 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-iin 4675 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-1st 7334 df-2nd 7335 df-tpos 7522 df-undef 7569 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-1o 7730 df-oadd 7734 df-er 7913 df-map 8027 df-en 8124 df-dom 8125 df-sdom 8126 df-fin 8127 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-nn 11233 df-2 11291 df-3 11292 df-4 11293 df-5 11294 df-6 11295 df-n0 11505 df-z 11590 df-uz 11900 df-fz 12540 df-struct 16081 df-ndx 16082 df-slot 16083 df-base 16085 df-sets 16086 df-ress 16087 df-plusg 16176 df-mulr 16177 df-sca 16179 df-vsca 16180 df-0g 16324 df-preset 17149 df-poset 17167 df-plt 17179 df-lub 17195 df-glb 17196 df-join 17197 df-meet 17198 df-p0 17260 df-p1 17261 df-lat 17267 df-clat 17329 df-mgm 17463 df-sgrp 17505 df-mnd 17516 df-submnd 17557 df-grp 17646 df-minusg 17647 df-sbg 17648 df-subg 17812 df-cntz 17970 df-lsm 18271 df-cmn 18415 df-abl 18416 df-mgp 18710 df-ur 18722 df-ring 18769 df-oppr 18843 df-dvdsr 18861 df-unit 18862 df-invr 18892 df-dvr 18903 df-drng 18971 df-lmod 19087 df-lss 19155 df-lsp 19194 df-lvec 19325 df-lsatoms 34784 df-oposet 34984 df-ol 34986 df-oml 34987 df-covers 35074 df-ats 35075 df-atl 35106 df-cvlat 35130 df-hlat 35159 df-llines 35305 df-lplanes 35306 df-lvols 35307 df-lines 35308 df-psubsp 35310 df-pmap 35311 df-padd 35603 df-lhyp 35795 df-laut 35796 df-ldil 35911 df-ltrn 35912 df-trl 35967 df-tendo 36563 df-edring 36565 df-disoa 36838 df-dvech 36888 df-dib 36948 df-dic 36982 df-dih 37038 df-doch 37157 |
This theorem is referenced by: hdmapoc 37743 |
Copyright terms: Public domain | W3C validator |