![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dochsordN | Structured version Visualization version GIF version |
Description: Strict ordering law for orthocomplement. (Contributed by NM, 12-Aug-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
doch11.h | ⊢ 𝐻 = (LHyp‘𝐾) |
doch11.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
doch11.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
doch11.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
doch11.x | ⊢ (𝜑 → 𝑋 ∈ ran 𝐼) |
doch11.y | ⊢ (𝜑 → 𝑌 ∈ ran 𝐼) |
Ref | Expression |
---|---|
dochsordN | ⊢ (𝜑 → (𝑋 ⊊ 𝑌 ↔ ( ⊥ ‘𝑌) ⊊ ( ⊥ ‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | doch11.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | doch11.i | . . . 4 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
3 | doch11.o | . . . 4 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
4 | doch11.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
5 | doch11.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ran 𝐼) | |
6 | doch11.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ ran 𝐼) | |
7 | 1, 2, 3, 4, 5, 6 | dochord 37161 | . . 3 ⊢ (𝜑 → (𝑋 ⊆ 𝑌 ↔ ( ⊥ ‘𝑌) ⊆ ( ⊥ ‘𝑋))) |
8 | 1, 2, 3, 4, 6, 5 | doch11 37164 | . . . . 5 ⊢ (𝜑 → (( ⊥ ‘𝑌) = ( ⊥ ‘𝑋) ↔ 𝑌 = 𝑋)) |
9 | eqcom 2767 | . . . . 5 ⊢ (𝑌 = 𝑋 ↔ 𝑋 = 𝑌) | |
10 | 8, 9 | syl6rbb 277 | . . . 4 ⊢ (𝜑 → (𝑋 = 𝑌 ↔ ( ⊥ ‘𝑌) = ( ⊥ ‘𝑋))) |
11 | 10 | necon3bid 2976 | . . 3 ⊢ (𝜑 → (𝑋 ≠ 𝑌 ↔ ( ⊥ ‘𝑌) ≠ ( ⊥ ‘𝑋))) |
12 | 7, 11 | anbi12d 749 | . 2 ⊢ (𝜑 → ((𝑋 ⊆ 𝑌 ∧ 𝑋 ≠ 𝑌) ↔ (( ⊥ ‘𝑌) ⊆ ( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌) ≠ ( ⊥ ‘𝑋)))) |
13 | df-pss 3731 | . 2 ⊢ (𝑋 ⊊ 𝑌 ↔ (𝑋 ⊆ 𝑌 ∧ 𝑋 ≠ 𝑌)) | |
14 | df-pss 3731 | . 2 ⊢ (( ⊥ ‘𝑌) ⊊ ( ⊥ ‘𝑋) ↔ (( ⊥ ‘𝑌) ⊆ ( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌) ≠ ( ⊥ ‘𝑋))) | |
15 | 12, 13, 14 | 3bitr4g 303 | 1 ⊢ (𝜑 → (𝑋 ⊊ 𝑌 ↔ ( ⊥ ‘𝑌) ⊊ ( ⊥ ‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 ⊆ wss 3715 ⊊ wpss 3716 ran crn 5267 ‘cfv 6049 HLchlt 35140 LHypclh 35773 DIsoHcdih 37019 ocHcoch 37138 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 ax-riotaBAD 34742 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-iin 4675 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-1st 7333 df-2nd 7334 df-tpos 7521 df-undef 7568 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-1o 7729 df-oadd 7733 df-er 7911 df-map 8025 df-en 8122 df-dom 8123 df-sdom 8124 df-fin 8125 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-nn 11213 df-2 11271 df-3 11272 df-4 11273 df-5 11274 df-6 11275 df-n0 11485 df-z 11570 df-uz 11880 df-fz 12520 df-struct 16061 df-ndx 16062 df-slot 16063 df-base 16065 df-sets 16066 df-ress 16067 df-plusg 16156 df-mulr 16157 df-sca 16159 df-vsca 16160 df-0g 16304 df-preset 17129 df-poset 17147 df-plt 17159 df-lub 17175 df-glb 17176 df-join 17177 df-meet 17178 df-p0 17240 df-p1 17241 df-lat 17247 df-clat 17309 df-mgm 17443 df-sgrp 17485 df-mnd 17496 df-submnd 17537 df-grp 17626 df-minusg 17627 df-sbg 17628 df-subg 17792 df-cntz 17950 df-lsm 18251 df-cmn 18395 df-abl 18396 df-mgp 18690 df-ur 18702 df-ring 18749 df-oppr 18823 df-dvdsr 18841 df-unit 18842 df-invr 18872 df-dvr 18883 df-drng 18951 df-lmod 19067 df-lss 19135 df-lsp 19174 df-lvec 19305 df-oposet 34966 df-ol 34968 df-oml 34969 df-covers 35056 df-ats 35057 df-atl 35088 df-cvlat 35112 df-hlat 35141 df-llines 35287 df-lplanes 35288 df-lvols 35289 df-lines 35290 df-psubsp 35292 df-pmap 35293 df-padd 35585 df-lhyp 35777 df-laut 35778 df-ldil 35893 df-ltrn 35894 df-trl 35949 df-tendo 36545 df-edring 36547 df-disoa 36820 df-dvech 36870 df-dib 36930 df-dic 36964 df-dih 37020 df-doch 37139 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |