![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dochsncom | Structured version Visualization version GIF version |
Description: Swap vectors in an orthocomplement of a singleton. (Contributed by NM, 17-Jun-2015.) |
Ref | Expression |
---|---|
dochsncom.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dochsncom.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
dochsncom.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dochsncom.v | ⊢ 𝑉 = (Base‘𝑈) |
dochsncom.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
dochsncom.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
dochsncom.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
Ref | Expression |
---|---|
dochsncom | ⊢ (𝜑 → (𝑋 ∈ ( ⊥ ‘{𝑌}) ↔ 𝑌 ∈ ( ⊥ ‘{𝑋}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dochsncom.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | eqid 2771 | . . . 4 ⊢ ((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊) | |
3 | dochsncom.o | . . . 4 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
4 | dochsncom.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
5 | dochsncom.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
6 | dochsncom.u | . . . . . 6 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
7 | dochsncom.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑈) | |
8 | eqid 2771 | . . . . . 6 ⊢ (LSpan‘𝑈) = (LSpan‘𝑈) | |
9 | 1, 6, 7, 8, 2 | dihlsprn 37141 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉) → ((LSpan‘𝑈)‘{𝑋}) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
10 | 4, 5, 9 | syl2anc 573 | . . . 4 ⊢ (𝜑 → ((LSpan‘𝑈)‘{𝑋}) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
11 | dochsncom.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
12 | 1, 6, 7, 8, 2 | dihlsprn 37141 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ∈ 𝑉) → ((LSpan‘𝑈)‘{𝑌}) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
13 | 4, 11, 12 | syl2anc 573 | . . . 4 ⊢ (𝜑 → ((LSpan‘𝑈)‘{𝑌}) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
14 | 1, 2, 3, 4, 10, 13 | dochord3 37182 | . . 3 ⊢ (𝜑 → (((LSpan‘𝑈)‘{𝑋}) ⊆ ( ⊥ ‘((LSpan‘𝑈)‘{𝑌})) ↔ ((LSpan‘𝑈)‘{𝑌}) ⊆ ( ⊥ ‘((LSpan‘𝑈)‘{𝑋})))) |
15 | 11 | snssd 4475 | . . . . 5 ⊢ (𝜑 → {𝑌} ⊆ 𝑉) |
16 | 1, 6, 3, 7, 8, 4, 15 | dochocsp 37189 | . . . 4 ⊢ (𝜑 → ( ⊥ ‘((LSpan‘𝑈)‘{𝑌})) = ( ⊥ ‘{𝑌})) |
17 | 16 | sseq2d 3782 | . . 3 ⊢ (𝜑 → (((LSpan‘𝑈)‘{𝑋}) ⊆ ( ⊥ ‘((LSpan‘𝑈)‘{𝑌})) ↔ ((LSpan‘𝑈)‘{𝑋}) ⊆ ( ⊥ ‘{𝑌}))) |
18 | 5 | snssd 4475 | . . . . 5 ⊢ (𝜑 → {𝑋} ⊆ 𝑉) |
19 | 1, 6, 3, 7, 8, 4, 18 | dochocsp 37189 | . . . 4 ⊢ (𝜑 → ( ⊥ ‘((LSpan‘𝑈)‘{𝑋})) = ( ⊥ ‘{𝑋})) |
20 | 19 | sseq2d 3782 | . . 3 ⊢ (𝜑 → (((LSpan‘𝑈)‘{𝑌}) ⊆ ( ⊥ ‘((LSpan‘𝑈)‘{𝑋})) ↔ ((LSpan‘𝑈)‘{𝑌}) ⊆ ( ⊥ ‘{𝑋}))) |
21 | 14, 17, 20 | 3bitr3d 298 | . 2 ⊢ (𝜑 → (((LSpan‘𝑈)‘{𝑋}) ⊆ ( ⊥ ‘{𝑌}) ↔ ((LSpan‘𝑈)‘{𝑌}) ⊆ ( ⊥ ‘{𝑋}))) |
22 | eqid 2771 | . . 3 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
23 | 1, 6, 4 | dvhlmod 36920 | . . 3 ⊢ (𝜑 → 𝑈 ∈ LMod) |
24 | 1, 6, 7, 22, 3 | dochlss 37164 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ {𝑌} ⊆ 𝑉) → ( ⊥ ‘{𝑌}) ∈ (LSubSp‘𝑈)) |
25 | 4, 15, 24 | syl2anc 573 | . . 3 ⊢ (𝜑 → ( ⊥ ‘{𝑌}) ∈ (LSubSp‘𝑈)) |
26 | 7, 22, 8, 23, 25, 5 | lspsnel5 19208 | . 2 ⊢ (𝜑 → (𝑋 ∈ ( ⊥ ‘{𝑌}) ↔ ((LSpan‘𝑈)‘{𝑋}) ⊆ ( ⊥ ‘{𝑌}))) |
27 | 1, 6, 7, 22, 3 | dochlss 37164 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ {𝑋} ⊆ 𝑉) → ( ⊥ ‘{𝑋}) ∈ (LSubSp‘𝑈)) |
28 | 4, 18, 27 | syl2anc 573 | . . 3 ⊢ (𝜑 → ( ⊥ ‘{𝑋}) ∈ (LSubSp‘𝑈)) |
29 | 7, 22, 8, 23, 28, 11 | lspsnel5 19208 | . 2 ⊢ (𝜑 → (𝑌 ∈ ( ⊥ ‘{𝑋}) ↔ ((LSpan‘𝑈)‘{𝑌}) ⊆ ( ⊥ ‘{𝑋}))) |
30 | 21, 26, 29 | 3bitr4d 300 | 1 ⊢ (𝜑 → (𝑋 ∈ ( ⊥ ‘{𝑌}) ↔ 𝑌 ∈ ( ⊥ ‘{𝑋}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ⊆ wss 3723 {csn 4316 ran crn 5250 ‘cfv 6031 Basecbs 16064 LSubSpclss 19142 LSpanclspn 19184 HLchlt 35159 LHypclh 35792 DVecHcdvh 36888 DIsoHcdih 37038 ocHcoch 37157 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 ax-riotaBAD 34761 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-fal 1637 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-iin 4657 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-tpos 7504 df-undef 7551 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-oadd 7717 df-er 7896 df-map 8011 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-nn 11223 df-2 11281 df-3 11282 df-4 11283 df-5 11284 df-6 11285 df-n0 11495 df-z 11580 df-uz 11889 df-fz 12534 df-struct 16066 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-ress 16072 df-plusg 16162 df-mulr 16163 df-sca 16165 df-vsca 16166 df-0g 16310 df-preset 17136 df-poset 17154 df-plt 17166 df-lub 17182 df-glb 17183 df-join 17184 df-meet 17185 df-p0 17247 df-p1 17248 df-lat 17254 df-clat 17316 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-submnd 17544 df-grp 17633 df-minusg 17634 df-sbg 17635 df-subg 17799 df-cntz 17957 df-lsm 18258 df-cmn 18402 df-abl 18403 df-mgp 18698 df-ur 18710 df-ring 18757 df-oppr 18831 df-dvdsr 18849 df-unit 18850 df-invr 18880 df-dvr 18891 df-drng 18959 df-lmod 19075 df-lss 19143 df-lsp 19185 df-lvec 19316 df-lsatoms 34785 df-oposet 34985 df-ol 34987 df-oml 34988 df-covers 35075 df-ats 35076 df-atl 35107 df-cvlat 35131 df-hlat 35160 df-llines 35306 df-lplanes 35307 df-lvols 35308 df-lines 35309 df-psubsp 35311 df-pmap 35312 df-padd 35604 df-lhyp 35796 df-laut 35797 df-ldil 35912 df-ltrn 35913 df-trl 35968 df-tendo 36564 df-edring 36566 df-disoa 36839 df-dvech 36889 df-dib 36949 df-dic 36983 df-dih 37039 df-doch 37158 |
This theorem is referenced by: hdmapip0com 37727 hdmapoc 37741 |
Copyright terms: Public domain | W3C validator |