Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dochsatshp Structured version   Visualization version   GIF version

Theorem dochsatshp 37211
Description: The orthocomplement of a subspace atom is a hyperplane. (Contributed by NM, 27-Jul-2014.) (Revised by Mario Carneiro, 1-Oct-2014.)
Hypotheses
Ref Expression
dochsatshp.h 𝐻 = (LHyp‘𝐾)
dochsatshp.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dochsatshp.o = ((ocH‘𝐾)‘𝑊)
dochsatshp.a 𝐴 = (LSAtoms‘𝑈)
dochsatshp.y 𝑌 = (LSHyp‘𝑈)
dochsatshp.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
dochsatshp.q (𝜑𝑄𝐴)
Assertion
Ref Expression
dochsatshp (𝜑 → ( 𝑄) ∈ 𝑌)

Proof of Theorem dochsatshp
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 dochsatshp.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 eqid 2748 . . . 4 (Base‘𝑈) = (Base‘𝑈)
3 dochsatshp.a . . . 4 𝐴 = (LSAtoms‘𝑈)
4 dochsatshp.h . . . . 5 𝐻 = (LHyp‘𝐾)
5 dochsatshp.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
64, 5, 1dvhlmod 36870 . . . 4 (𝜑𝑈 ∈ LMod)
7 dochsatshp.q . . . 4 (𝜑𝑄𝐴)
82, 3, 6, 7lsatssv 34757 . . 3 (𝜑𝑄 ⊆ (Base‘𝑈))
9 eqid 2748 . . . 4 (LSubSp‘𝑈) = (LSubSp‘𝑈)
10 dochsatshp.o . . . 4 = ((ocH‘𝐾)‘𝑊)
114, 5, 2, 9, 10dochlss 37114 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑄 ⊆ (Base‘𝑈)) → ( 𝑄) ∈ (LSubSp‘𝑈))
121, 8, 11syl2anc 696 . 2 (𝜑 → ( 𝑄) ∈ (LSubSp‘𝑈))
13 eqid 2748 . . . 4 (0g𝑈) = (0g𝑈)
1413, 3, 6, 7lsatn0 34758 . . 3 (𝜑𝑄 ≠ {(0g𝑈)})
154, 5, 10, 2, 13doch0 37118 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( ‘{(0g𝑈)}) = (Base‘𝑈))
161, 15syl 17 . . . . . 6 (𝜑 → ( ‘{(0g𝑈)}) = (Base‘𝑈))
1716eqeq2d 2758 . . . . 5 (𝜑 → (( 𝑄) = ( ‘{(0g𝑈)}) ↔ ( 𝑄) = (Base‘𝑈)))
18 eqid 2748 . . . . . 6 ((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊)
194, 5, 18, 3dih1dimat 37090 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑄𝐴) → 𝑄 ∈ ran ((DIsoH‘𝐾)‘𝑊))
201, 7, 19syl2anc 696 . . . . . 6 (𝜑𝑄 ∈ ran ((DIsoH‘𝐾)‘𝑊))
214, 18, 5, 13dih0rn 37044 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → {(0g𝑈)} ∈ ran ((DIsoH‘𝐾)‘𝑊))
221, 21syl 17 . . . . . 6 (𝜑 → {(0g𝑈)} ∈ ran ((DIsoH‘𝐾)‘𝑊))
234, 18, 10, 1, 20, 22doch11 37133 . . . . 5 (𝜑 → (( 𝑄) = ( ‘{(0g𝑈)}) ↔ 𝑄 = {(0g𝑈)}))
2417, 23bitr3d 270 . . . 4 (𝜑 → (( 𝑄) = (Base‘𝑈) ↔ 𝑄 = {(0g𝑈)}))
2524necon3bid 2964 . . 3 (𝜑 → (( 𝑄) ≠ (Base‘𝑈) ↔ 𝑄 ≠ {(0g𝑈)}))
2614, 25mpbird 247 . 2 (𝜑 → ( 𝑄) ≠ (Base‘𝑈))
27 eqid 2748 . . . . . 6 (LSpan‘𝑈) = (LSpan‘𝑈)
282, 27, 13, 3islsat 34750 . . . . 5 (𝑈 ∈ LMod → (𝑄𝐴 ↔ ∃𝑣 ∈ ((Base‘𝑈) ∖ {(0g𝑈)})𝑄 = ((LSpan‘𝑈)‘{𝑣})))
296, 28syl 17 . . . 4 (𝜑 → (𝑄𝐴 ↔ ∃𝑣 ∈ ((Base‘𝑈) ∖ {(0g𝑈)})𝑄 = ((LSpan‘𝑈)‘{𝑣})))
307, 29mpbid 222 . . 3 (𝜑 → ∃𝑣 ∈ ((Base‘𝑈) ∖ {(0g𝑈)})𝑄 = ((LSpan‘𝑈)‘{𝑣}))
31 eldifi 3863 . . . . . . 7 (𝑣 ∈ ((Base‘𝑈) ∖ {(0g𝑈)}) → 𝑣 ∈ (Base‘𝑈))
3231adantr 472 . . . . . 6 ((𝑣 ∈ ((Base‘𝑈) ∖ {(0g𝑈)}) ∧ 𝑄 = ((LSpan‘𝑈)‘{𝑣})) → 𝑣 ∈ (Base‘𝑈))
3332a1i 11 . . . . 5 (𝜑 → ((𝑣 ∈ ((Base‘𝑈) ∖ {(0g𝑈)}) ∧ 𝑄 = ((LSpan‘𝑈)‘{𝑣})) → 𝑣 ∈ (Base‘𝑈)))
349, 27lspid 19155 . . . . . . . . . . . 12 ((𝑈 ∈ LMod ∧ ( 𝑄) ∈ (LSubSp‘𝑈)) → ((LSpan‘𝑈)‘( 𝑄)) = ( 𝑄))
356, 12, 34syl2anc 696 . . . . . . . . . . 11 (𝜑 → ((LSpan‘𝑈)‘( 𝑄)) = ( 𝑄))
3635uneq1d 3897 . . . . . . . . . 10 (𝜑 → (((LSpan‘𝑈)‘( 𝑄)) ∪ ((LSpan‘𝑈)‘{𝑣})) = (( 𝑄) ∪ ((LSpan‘𝑈)‘{𝑣})))
3736fveq2d 6344 . . . . . . . . 9 (𝜑 → ((LSpan‘𝑈)‘(((LSpan‘𝑈)‘( 𝑄)) ∪ ((LSpan‘𝑈)‘{𝑣}))) = ((LSpan‘𝑈)‘(( 𝑄) ∪ ((LSpan‘𝑈)‘{𝑣}))))
3837adantr 472 . . . . . . . 8 ((𝜑 ∧ (𝑣 ∈ ((Base‘𝑈) ∖ {(0g𝑈)}) ∧ 𝑄 = ((LSpan‘𝑈)‘{𝑣}))) → ((LSpan‘𝑈)‘(((LSpan‘𝑈)‘( 𝑄)) ∪ ((LSpan‘𝑈)‘{𝑣}))) = ((LSpan‘𝑈)‘(( 𝑄) ∪ ((LSpan‘𝑈)‘{𝑣}))))
396adantr 472 . . . . . . . . 9 ((𝜑 ∧ (𝑣 ∈ ((Base‘𝑈) ∖ {(0g𝑈)}) ∧ 𝑄 = ((LSpan‘𝑈)‘{𝑣}))) → 𝑈 ∈ LMod)
402, 9lssss 19110 . . . . . . . . . . 11 (( 𝑄) ∈ (LSubSp‘𝑈) → ( 𝑄) ⊆ (Base‘𝑈))
4112, 40syl 17 . . . . . . . . . 10 (𝜑 → ( 𝑄) ⊆ (Base‘𝑈))
4241adantr 472 . . . . . . . . 9 ((𝜑 ∧ (𝑣 ∈ ((Base‘𝑈) ∖ {(0g𝑈)}) ∧ 𝑄 = ((LSpan‘𝑈)‘{𝑣}))) → ( 𝑄) ⊆ (Base‘𝑈))
4331snssd 4473 . . . . . . . . . . 11 (𝑣 ∈ ((Base‘𝑈) ∖ {(0g𝑈)}) → {𝑣} ⊆ (Base‘𝑈))
4443adantr 472 . . . . . . . . . 10 ((𝑣 ∈ ((Base‘𝑈) ∖ {(0g𝑈)}) ∧ 𝑄 = ((LSpan‘𝑈)‘{𝑣})) → {𝑣} ⊆ (Base‘𝑈))
4544adantl 473 . . . . . . . . 9 ((𝜑 ∧ (𝑣 ∈ ((Base‘𝑈) ∖ {(0g𝑈)}) ∧ 𝑄 = ((LSpan‘𝑈)‘{𝑣}))) → {𝑣} ⊆ (Base‘𝑈))
462, 27lspun 19160 . . . . . . . . 9 ((𝑈 ∈ LMod ∧ ( 𝑄) ⊆ (Base‘𝑈) ∧ {𝑣} ⊆ (Base‘𝑈)) → ((LSpan‘𝑈)‘(( 𝑄) ∪ {𝑣})) = ((LSpan‘𝑈)‘(((LSpan‘𝑈)‘( 𝑄)) ∪ ((LSpan‘𝑈)‘{𝑣}))))
4739, 42, 45, 46syl3anc 1463 . . . . . . . 8 ((𝜑 ∧ (𝑣 ∈ ((Base‘𝑈) ∖ {(0g𝑈)}) ∧ 𝑄 = ((LSpan‘𝑈)‘{𝑣}))) → ((LSpan‘𝑈)‘(( 𝑄) ∪ {𝑣})) = ((LSpan‘𝑈)‘(((LSpan‘𝑈)‘( 𝑄)) ∪ ((LSpan‘𝑈)‘{𝑣}))))
48 uneq2 3892 . . . . . . . . . . 11 (𝑄 = ((LSpan‘𝑈)‘{𝑣}) → (( 𝑄) ∪ 𝑄) = (( 𝑄) ∪ ((LSpan‘𝑈)‘{𝑣})))
4948fveq2d 6344 . . . . . . . . . 10 (𝑄 = ((LSpan‘𝑈)‘{𝑣}) → ((LSpan‘𝑈)‘(( 𝑄) ∪ 𝑄)) = ((LSpan‘𝑈)‘(( 𝑄) ∪ ((LSpan‘𝑈)‘{𝑣}))))
5049adantl 473 . . . . . . . . 9 ((𝑣 ∈ ((Base‘𝑈) ∖ {(0g𝑈)}) ∧ 𝑄 = ((LSpan‘𝑈)‘{𝑣})) → ((LSpan‘𝑈)‘(( 𝑄) ∪ 𝑄)) = ((LSpan‘𝑈)‘(( 𝑄) ∪ ((LSpan‘𝑈)‘{𝑣}))))
5150adantl 473 . . . . . . . 8 ((𝜑 ∧ (𝑣 ∈ ((Base‘𝑈) ∖ {(0g𝑈)}) ∧ 𝑄 = ((LSpan‘𝑈)‘{𝑣}))) → ((LSpan‘𝑈)‘(( 𝑄) ∪ 𝑄)) = ((LSpan‘𝑈)‘(( 𝑄) ∪ ((LSpan‘𝑈)‘{𝑣}))))
5238, 47, 513eqtr4d 2792 . . . . . . 7 ((𝜑 ∧ (𝑣 ∈ ((Base‘𝑈) ∖ {(0g𝑈)}) ∧ 𝑄 = ((LSpan‘𝑈)‘{𝑣}))) → ((LSpan‘𝑈)‘(( 𝑄) ∪ {𝑣})) = ((LSpan‘𝑈)‘(( 𝑄) ∪ 𝑄)))
53 eqid 2748 . . . . . . . . . . 11 ((joinH‘𝐾)‘𝑊) = ((joinH‘𝐾)‘𝑊)
54 eqid 2748 . . . . . . . . . . 11 (LSSum‘𝑈) = (LSSum‘𝑈)
554, 18, 5, 2, 10dochcl 37113 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑄 ⊆ (Base‘𝑈)) → ( 𝑄) ∈ ran ((DIsoH‘𝐾)‘𝑊))
561, 8, 55syl2anc 696 . . . . . . . . . . 11 (𝜑 → ( 𝑄) ∈ ran ((DIsoH‘𝐾)‘𝑊))
574, 18, 53, 5, 54, 3, 1, 56, 7dihjat2 37191 . . . . . . . . . 10 (𝜑 → (( 𝑄)((joinH‘𝐾)‘𝑊)𝑄) = (( 𝑄)(LSSum‘𝑈)𝑄))
584, 5, 2, 53, 1, 41, 8djhcom 37165 . . . . . . . . . 10 (𝜑 → (( 𝑄)((joinH‘𝐾)‘𝑊)𝑄) = (𝑄((joinH‘𝐾)‘𝑊)( 𝑄)))
599, 3, 6, 7lsatlssel 34756 . . . . . . . . . . 11 (𝜑𝑄 ∈ (LSubSp‘𝑈))
609, 27, 54lsmsp 19259 . . . . . . . . . . 11 ((𝑈 ∈ LMod ∧ ( 𝑄) ∈ (LSubSp‘𝑈) ∧ 𝑄 ∈ (LSubSp‘𝑈)) → (( 𝑄)(LSSum‘𝑈)𝑄) = ((LSpan‘𝑈)‘(( 𝑄) ∪ 𝑄)))
616, 12, 59, 60syl3anc 1463 . . . . . . . . . 10 (𝜑 → (( 𝑄)(LSSum‘𝑈)𝑄) = ((LSpan‘𝑈)‘(( 𝑄) ∪ 𝑄)))
6257, 58, 613eqtr3rd 2791 . . . . . . . . 9 (𝜑 → ((LSpan‘𝑈)‘(( 𝑄) ∪ 𝑄)) = (𝑄((joinH‘𝐾)‘𝑊)( 𝑄)))
634, 5, 2, 10, 53djhexmid 37171 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑄 ⊆ (Base‘𝑈)) → (𝑄((joinH‘𝐾)‘𝑊)( 𝑄)) = (Base‘𝑈))
641, 8, 63syl2anc 696 . . . . . . . . 9 (𝜑 → (𝑄((joinH‘𝐾)‘𝑊)( 𝑄)) = (Base‘𝑈))
6562, 64eqtrd 2782 . . . . . . . 8 (𝜑 → ((LSpan‘𝑈)‘(( 𝑄) ∪ 𝑄)) = (Base‘𝑈))
6665adantr 472 . . . . . . 7 ((𝜑 ∧ (𝑣 ∈ ((Base‘𝑈) ∖ {(0g𝑈)}) ∧ 𝑄 = ((LSpan‘𝑈)‘{𝑣}))) → ((LSpan‘𝑈)‘(( 𝑄) ∪ 𝑄)) = (Base‘𝑈))
6752, 66eqtrd 2782 . . . . . 6 ((𝜑 ∧ (𝑣 ∈ ((Base‘𝑈) ∖ {(0g𝑈)}) ∧ 𝑄 = ((LSpan‘𝑈)‘{𝑣}))) → ((LSpan‘𝑈)‘(( 𝑄) ∪ {𝑣})) = (Base‘𝑈))
6867ex 449 . . . . 5 (𝜑 → ((𝑣 ∈ ((Base‘𝑈) ∖ {(0g𝑈)}) ∧ 𝑄 = ((LSpan‘𝑈)‘{𝑣})) → ((LSpan‘𝑈)‘(( 𝑄) ∪ {𝑣})) = (Base‘𝑈)))
6933, 68jcad 556 . . . 4 (𝜑 → ((𝑣 ∈ ((Base‘𝑈) ∖ {(0g𝑈)}) ∧ 𝑄 = ((LSpan‘𝑈)‘{𝑣})) → (𝑣 ∈ (Base‘𝑈) ∧ ((LSpan‘𝑈)‘(( 𝑄) ∪ {𝑣})) = (Base‘𝑈))))
7069reximdv2 3140 . . 3 (𝜑 → (∃𝑣 ∈ ((Base‘𝑈) ∖ {(0g𝑈)})𝑄 = ((LSpan‘𝑈)‘{𝑣}) → ∃𝑣 ∈ (Base‘𝑈)((LSpan‘𝑈)‘(( 𝑄) ∪ {𝑣})) = (Base‘𝑈)))
7130, 70mpd 15 . 2 (𝜑 → ∃𝑣 ∈ (Base‘𝑈)((LSpan‘𝑈)‘(( 𝑄) ∪ {𝑣})) = (Base‘𝑈))
724, 5, 1dvhlvec 36869 . . 3 (𝜑𝑈 ∈ LVec)
73 dochsatshp.y . . . 4 𝑌 = (LSHyp‘𝑈)
742, 27, 9, 73islshp 34738 . . 3 (𝑈 ∈ LVec → (( 𝑄) ∈ 𝑌 ↔ (( 𝑄) ∈ (LSubSp‘𝑈) ∧ ( 𝑄) ≠ (Base‘𝑈) ∧ ∃𝑣 ∈ (Base‘𝑈)((LSpan‘𝑈)‘(( 𝑄) ∪ {𝑣})) = (Base‘𝑈))))
7572, 74syl 17 . 2 (𝜑 → (( 𝑄) ∈ 𝑌 ↔ (( 𝑄) ∈ (LSubSp‘𝑈) ∧ ( 𝑄) ≠ (Base‘𝑈) ∧ ∃𝑣 ∈ (Base‘𝑈)((LSpan‘𝑈)‘(( 𝑄) ∪ {𝑣})) = (Base‘𝑈))))
7612, 26, 71, 75mpbir3and 1406 1 (𝜑 → ( 𝑄) ∈ 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1620  wcel 2127  wne 2920  wrex 3039  cdif 3700  cun 3701  wss 3703  {csn 4309  ran crn 5255  cfv 6037  (class class class)co 6801  Basecbs 16030  0gc0g 16273  LSSumclsm 18220  LModclmod 19036  LSubSpclss 19105  LSpanclspn 19144  LVecclvec 19275  LSAtomsclsa 34733  LSHypclsh 34734  HLchlt 35109  LHypclh 35742  DVecHcdvh 36838  DIsoHcdih 36988  ocHcoch 37107  joinHcdjh 37154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-cnex 10155  ax-resscn 10156  ax-1cn 10157  ax-icn 10158  ax-addcl 10159  ax-addrcl 10160  ax-mulcl 10161  ax-mulrcl 10162  ax-mulcom 10163  ax-addass 10164  ax-mulass 10165  ax-distr 10166  ax-i2m1 10167  ax-1ne0 10168  ax-1rid 10169  ax-rnegex 10170  ax-rrecex 10171  ax-cnre 10172  ax-pre-lttri 10173  ax-pre-lttrn 10174  ax-pre-ltadd 10175  ax-pre-mulgt0 10176  ax-riotaBAD 34711
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-fal 1626  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-reu 3045  df-rmo 3046  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-int 4616  df-iun 4662  df-iin 4663  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-om 7219  df-1st 7321  df-2nd 7322  df-tpos 7509  df-undef 7556  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-1o 7717  df-oadd 7721  df-er 7899  df-map 8013  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-pnf 10239  df-mnf 10240  df-xr 10241  df-ltxr 10242  df-le 10243  df-sub 10431  df-neg 10432  df-nn 11184  df-2 11242  df-3 11243  df-4 11244  df-5 11245  df-6 11246  df-n0 11456  df-z 11541  df-uz 11851  df-fz 12491  df-struct 16032  df-ndx 16033  df-slot 16034  df-base 16036  df-sets 16037  df-ress 16038  df-plusg 16127  df-mulr 16128  df-sca 16130  df-vsca 16131  df-0g 16275  df-preset 17100  df-poset 17118  df-plt 17130  df-lub 17146  df-glb 17147  df-join 17148  df-meet 17149  df-p0 17211  df-p1 17212  df-lat 17218  df-clat 17280  df-mgm 17414  df-sgrp 17456  df-mnd 17467  df-submnd 17508  df-grp 17597  df-minusg 17598  df-sbg 17599  df-subg 17763  df-cntz 17921  df-lsm 18222  df-cmn 18366  df-abl 18367  df-mgp 18661  df-ur 18673  df-ring 18720  df-oppr 18794  df-dvdsr 18812  df-unit 18813  df-invr 18843  df-dvr 18854  df-drng 18922  df-lmod 19038  df-lss 19106  df-lsp 19145  df-lvec 19276  df-lsatoms 34735  df-lshyp 34736  df-oposet 34935  df-ol 34937  df-oml 34938  df-covers 35025  df-ats 35026  df-atl 35057  df-cvlat 35081  df-hlat 35110  df-llines 35256  df-lplanes 35257  df-lvols 35258  df-lines 35259  df-psubsp 35261  df-pmap 35262  df-padd 35554  df-lhyp 35746  df-laut 35747  df-ldil 35862  df-ltrn 35863  df-trl 35918  df-tgrp 36502  df-tendo 36514  df-edring 36516  df-dveca 36762  df-disoa 36789  df-dvech 36839  df-dib 36899  df-dic 36933  df-dih 36989  df-doch 37108  df-djh 37155
This theorem is referenced by:  dochsatshpb  37212  dochsnshp  37213  dochpolN  37250  lclkrlem2c  37269  lclkrlem2e  37271  mapdordlem2  37397
  Copyright terms: Public domain W3C validator