![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > doca3N | Structured version Visualization version GIF version |
Description: Double orthocomplement of partial isomorphism A. (Contributed by NM, 17-Jan-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
doca2.h | ⊢ 𝐻 = (LHyp‘𝐾) |
doca2.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
doca2.n | ⊢ ⊥ = ((ocA‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
doca3N | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | doca2.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | doca2.i | . . . 4 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
3 | 1, 2 | diacnvclN 36854 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → (◡𝐼‘𝑋) ∈ dom 𝐼) |
4 | doca2.n | . . . 4 ⊢ ⊥ = ((ocA‘𝐾)‘𝑊) | |
5 | 1, 2, 4 | doca2N 36929 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (◡𝐼‘𝑋) ∈ dom 𝐼) → ( ⊥ ‘( ⊥ ‘(𝐼‘(◡𝐼‘𝑋)))) = (𝐼‘(◡𝐼‘𝑋))) |
6 | 3, 5 | syldan 571 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → ( ⊥ ‘( ⊥ ‘(𝐼‘(◡𝐼‘𝑋)))) = (𝐼‘(◡𝐼‘𝑋))) |
7 | 1, 2 | diaf11N 36852 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐼:dom 𝐼–1-1-onto→ran 𝐼) |
8 | f1ocnvfv2 6675 | . . . . 5 ⊢ ((𝐼:dom 𝐼–1-1-onto→ran 𝐼 ∧ 𝑋 ∈ ran 𝐼) → (𝐼‘(◡𝐼‘𝑋)) = 𝑋) | |
9 | 7, 8 | sylan 561 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → (𝐼‘(◡𝐼‘𝑋)) = 𝑋) |
10 | 9 | fveq2d 6336 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → ( ⊥ ‘(𝐼‘(◡𝐼‘𝑋))) = ( ⊥ ‘𝑋)) |
11 | 10 | fveq2d 6336 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → ( ⊥ ‘( ⊥ ‘(𝐼‘(◡𝐼‘𝑋)))) = ( ⊥ ‘( ⊥ ‘𝑋))) |
12 | 6, 11, 9 | 3eqtr3d 2812 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1630 ∈ wcel 2144 ◡ccnv 5248 dom cdm 5249 ran crn 5250 –1-1-onto→wf1o 6030 ‘cfv 6031 HLchlt 35152 LHypclh 35785 DIsoAcdia 36831 ocAcocaN 36922 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-riotaBAD 34754 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-iin 4655 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-1st 7314 df-2nd 7315 df-undef 7550 df-map 8010 df-preset 17135 df-poset 17153 df-plt 17165 df-lub 17181 df-glb 17182 df-join 17183 df-meet 17184 df-p0 17246 df-p1 17247 df-lat 17253 df-clat 17315 df-oposet 34978 df-cmtN 34979 df-ol 34980 df-oml 34981 df-covers 35068 df-ats 35069 df-atl 35100 df-cvlat 35124 df-hlat 35153 df-llines 35299 df-lplanes 35300 df-lvols 35301 df-lines 35302 df-psubsp 35304 df-pmap 35305 df-padd 35597 df-lhyp 35789 df-laut 35790 df-ldil 35905 df-ltrn 35906 df-trl 35961 df-disoa 36832 df-docaN 36923 |
This theorem is referenced by: diarnN 36932 |
Copyright terms: Public domain | W3C validator |