Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  doca3N Structured version   Visualization version   GIF version

Theorem doca3N 36930
 Description: Double orthocomplement of partial isomorphism A. (Contributed by NM, 17-Jan-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
doca2.h 𝐻 = (LHyp‘𝐾)
doca2.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
doca2.n = ((ocA‘𝐾)‘𝑊)
Assertion
Ref Expression
doca3N (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ ran 𝐼) → ( ‘( 𝑋)) = 𝑋)

Proof of Theorem doca3N
StepHypRef Expression
1 doca2.h . . . 4 𝐻 = (LHyp‘𝐾)
2 doca2.i . . . 4 𝐼 = ((DIsoA‘𝐾)‘𝑊)
31, 2diacnvclN 36854 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ ran 𝐼) → (𝐼𝑋) ∈ dom 𝐼)
4 doca2.n . . . 4 = ((ocA‘𝐾)‘𝑊)
51, 2, 4doca2N 36929 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐼𝑋) ∈ dom 𝐼) → ( ‘( ‘(𝐼‘(𝐼𝑋)))) = (𝐼‘(𝐼𝑋)))
63, 5syldan 571 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ ran 𝐼) → ( ‘( ‘(𝐼‘(𝐼𝑋)))) = (𝐼‘(𝐼𝑋)))
71, 2diaf11N 36852 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼:dom 𝐼1-1-onto→ran 𝐼)
8 f1ocnvfv2 6675 . . . . 5 ((𝐼:dom 𝐼1-1-onto→ran 𝐼𝑋 ∈ ran 𝐼) → (𝐼‘(𝐼𝑋)) = 𝑋)
97, 8sylan 561 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ ran 𝐼) → (𝐼‘(𝐼𝑋)) = 𝑋)
109fveq2d 6336 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ ran 𝐼) → ( ‘(𝐼‘(𝐼𝑋))) = ( 𝑋))
1110fveq2d 6336 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ ran 𝐼) → ( ‘( ‘(𝐼‘(𝐼𝑋)))) = ( ‘( 𝑋)))
126, 11, 93eqtr3d 2812 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ ran 𝐼) → ( ‘( 𝑋)) = 𝑋)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   = wceq 1630   ∈ wcel 2144  ◡ccnv 5248  dom cdm 5249  ran crn 5250  –1-1-onto→wf1o 6030  ‘cfv 6031  HLchlt 35152  LHypclh 35785  DIsoAcdia 36831  ocAcocaN 36922 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-riotaBAD 34754 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-iin 4655  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-1st 7314  df-2nd 7315  df-undef 7550  df-map 8010  df-preset 17135  df-poset 17153  df-plt 17165  df-lub 17181  df-glb 17182  df-join 17183  df-meet 17184  df-p0 17246  df-p1 17247  df-lat 17253  df-clat 17315  df-oposet 34978  df-cmtN 34979  df-ol 34980  df-oml 34981  df-covers 35068  df-ats 35069  df-atl 35100  df-cvlat 35124  df-hlat 35153  df-llines 35299  df-lplanes 35300  df-lvols 35301  df-lines 35302  df-psubsp 35304  df-pmap 35305  df-padd 35597  df-lhyp 35789  df-laut 35790  df-ldil 35905  df-ltrn 35906  df-trl 35961  df-disoa 36832  df-docaN 36923 This theorem is referenced by:  diarnN  36932
 Copyright terms: Public domain W3C validator