![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dnnumch3lem | Structured version Visualization version GIF version |
Description: Value of the ordinal injection function. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
Ref | Expression |
---|---|
dnnumch.f | ⊢ 𝐹 = recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))) |
dnnumch.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
dnnumch.g | ⊢ (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺‘𝑦) ∈ 𝑦)) |
Ref | Expression |
---|---|
dnnumch3lem | ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ ∩ (◡𝐹 “ {𝑥}))‘𝑤) = ∩ (◡𝐹 “ {𝑤})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 479 | . 2 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → 𝑤 ∈ 𝐴) | |
2 | cnvimass 5643 | . . . 4 ⊢ (◡𝐹 “ {𝑤}) ⊆ dom 𝐹 | |
3 | dnnumch.f | . . . . . 6 ⊢ 𝐹 = recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))) | |
4 | 3 | tfr1 7663 | . . . . 5 ⊢ 𝐹 Fn On |
5 | fndm 6151 | . . . . 5 ⊢ (𝐹 Fn On → dom 𝐹 = On) | |
6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ dom 𝐹 = On |
7 | 2, 6 | sseqtri 3778 | . . 3 ⊢ (◡𝐹 “ {𝑤}) ⊆ On |
8 | dnnumch.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
9 | dnnumch.g | . . . . . 6 ⊢ (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺‘𝑦) ∈ 𝑦)) | |
10 | 3, 8, 9 | dnnumch2 38135 | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ ran 𝐹) |
11 | 10 | sselda 3744 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → 𝑤 ∈ ran 𝐹) |
12 | inisegn0 5655 | . . . 4 ⊢ (𝑤 ∈ ran 𝐹 ↔ (◡𝐹 “ {𝑤}) ≠ ∅) | |
13 | 11, 12 | sylib 208 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (◡𝐹 “ {𝑤}) ≠ ∅) |
14 | oninton 7166 | . . 3 ⊢ (((◡𝐹 “ {𝑤}) ⊆ On ∧ (◡𝐹 “ {𝑤}) ≠ ∅) → ∩ (◡𝐹 “ {𝑤}) ∈ On) | |
15 | 7, 13, 14 | sylancr 698 | . 2 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ∩ (◡𝐹 “ {𝑤}) ∈ On) |
16 | sneq 4331 | . . . . 5 ⊢ (𝑥 = 𝑤 → {𝑥} = {𝑤}) | |
17 | 16 | imaeq2d 5624 | . . . 4 ⊢ (𝑥 = 𝑤 → (◡𝐹 “ {𝑥}) = (◡𝐹 “ {𝑤})) |
18 | 17 | inteqd 4632 | . . 3 ⊢ (𝑥 = 𝑤 → ∩ (◡𝐹 “ {𝑥}) = ∩ (◡𝐹 “ {𝑤})) |
19 | eqid 2760 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ ∩ (◡𝐹 “ {𝑥})) = (𝑥 ∈ 𝐴 ↦ ∩ (◡𝐹 “ {𝑥})) | |
20 | 18, 19 | fvmptg 6443 | . 2 ⊢ ((𝑤 ∈ 𝐴 ∧ ∩ (◡𝐹 “ {𝑤}) ∈ On) → ((𝑥 ∈ 𝐴 ↦ ∩ (◡𝐹 “ {𝑥}))‘𝑤) = ∩ (◡𝐹 “ {𝑤})) |
21 | 1, 15, 20 | syl2anc 696 | 1 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ ∩ (◡𝐹 “ {𝑥}))‘𝑤) = ∩ (◡𝐹 “ {𝑤})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 ∀wral 3050 Vcvv 3340 ∖ cdif 3712 ⊆ wss 3715 ∅c0 4058 𝒫 cpw 4302 {csn 4321 ∩ cint 4627 ↦ cmpt 4881 ◡ccnv 5265 dom cdm 5266 ran crn 5267 “ cima 5269 Oncon0 5884 Fn wfn 6044 ‘cfv 6049 recscrecs 7637 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-wrecs 7577 df-recs 7638 |
This theorem is referenced by: dnnumch3 38137 dnwech 38138 |
Copyright terms: Public domain | W3C validator |