![]() |
Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dnizphlfeqhlf | Structured version Visualization version GIF version |
Description: The distance to nearest integer is a half for half-integers. (Contributed by Asger C. Ipsen, 15-Jun-2021.) |
Ref | Expression |
---|---|
dnizphlfeqhlf.t | ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) |
dnizphlfeqhlf.1 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
Ref | Expression |
---|---|
dnizphlfeqhlf | ⊢ (𝜑 → (𝑇‘(𝐴 + (1 / 2))) = (1 / 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dnizphlfeqhlf.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
2 | 1 | zred 11683 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
3 | halfre 11447 | . . . . 5 ⊢ (1 / 2) ∈ ℝ | |
4 | 3 | a1i 11 | . . . 4 ⊢ (𝜑 → (1 / 2) ∈ ℝ) |
5 | 2, 4 | readdcld 10270 | . . 3 ⊢ (𝜑 → (𝐴 + (1 / 2)) ∈ ℝ) |
6 | dnizphlfeqhlf.t | . . . 4 ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) | |
7 | 6 | dnival 32792 | . . 3 ⊢ ((𝐴 + (1 / 2)) ∈ ℝ → (𝑇‘(𝐴 + (1 / 2))) = (abs‘((⌊‘((𝐴 + (1 / 2)) + (1 / 2))) − (𝐴 + (1 / 2))))) |
8 | 5, 7 | syl 17 | . 2 ⊢ (𝜑 → (𝑇‘(𝐴 + (1 / 2))) = (abs‘((⌊‘((𝐴 + (1 / 2)) + (1 / 2))) − (𝐴 + (1 / 2))))) |
9 | 2 | recnd 10269 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
10 | 4 | recnd 10269 | . . . . . . . . 9 ⊢ (𝜑 → (1 / 2) ∈ ℂ) |
11 | 9, 10, 10 | addassd 10263 | . . . . . . . 8 ⊢ (𝜑 → ((𝐴 + (1 / 2)) + (1 / 2)) = (𝐴 + ((1 / 2) + (1 / 2)))) |
12 | 1cnd 10257 | . . . . . . . . . 10 ⊢ (𝜑 → 1 ∈ ℂ) | |
13 | 12 | 2halvesd 11479 | . . . . . . . . 9 ⊢ (𝜑 → ((1 / 2) + (1 / 2)) = 1) |
14 | 13 | oveq2d 6808 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 + ((1 / 2) + (1 / 2))) = (𝐴 + 1)) |
15 | 11, 14 | eqtrd 2804 | . . . . . . 7 ⊢ (𝜑 → ((𝐴 + (1 / 2)) + (1 / 2)) = (𝐴 + 1)) |
16 | 1 | peano2zd 11686 | . . . . . . 7 ⊢ (𝜑 → (𝐴 + 1) ∈ ℤ) |
17 | 15, 16 | eqeltrd 2849 | . . . . . 6 ⊢ (𝜑 → ((𝐴 + (1 / 2)) + (1 / 2)) ∈ ℤ) |
18 | flid 12816 | . . . . . 6 ⊢ (((𝐴 + (1 / 2)) + (1 / 2)) ∈ ℤ → (⌊‘((𝐴 + (1 / 2)) + (1 / 2))) = ((𝐴 + (1 / 2)) + (1 / 2))) | |
19 | 17, 18 | syl 17 | . . . . 5 ⊢ (𝜑 → (⌊‘((𝐴 + (1 / 2)) + (1 / 2))) = ((𝐴 + (1 / 2)) + (1 / 2))) |
20 | 19 | oveq1d 6807 | . . . 4 ⊢ (𝜑 → ((⌊‘((𝐴 + (1 / 2)) + (1 / 2))) − (𝐴 + (1 / 2))) = (((𝐴 + (1 / 2)) + (1 / 2)) − (𝐴 + (1 / 2)))) |
21 | 9, 10 | addcld 10260 | . . . . 5 ⊢ (𝜑 → (𝐴 + (1 / 2)) ∈ ℂ) |
22 | 21, 10 | pncan2d 10595 | . . . 4 ⊢ (𝜑 → (((𝐴 + (1 / 2)) + (1 / 2)) − (𝐴 + (1 / 2))) = (1 / 2)) |
23 | 20, 22 | eqtrd 2804 | . . 3 ⊢ (𝜑 → ((⌊‘((𝐴 + (1 / 2)) + (1 / 2))) − (𝐴 + (1 / 2))) = (1 / 2)) |
24 | 23 | fveq2d 6336 | . 2 ⊢ (𝜑 → (abs‘((⌊‘((𝐴 + (1 / 2)) + (1 / 2))) − (𝐴 + (1 / 2)))) = (abs‘(1 / 2))) |
25 | halfgt0 11449 | . . . . 5 ⊢ 0 < (1 / 2) | |
26 | 0re 10241 | . . . . . 6 ⊢ 0 ∈ ℝ | |
27 | 26, 3 | ltlei 10360 | . . . . 5 ⊢ (0 < (1 / 2) → 0 ≤ (1 / 2)) |
28 | 25, 27 | ax-mp 5 | . . . 4 ⊢ 0 ≤ (1 / 2) |
29 | 28 | a1i 11 | . . 3 ⊢ (𝜑 → 0 ≤ (1 / 2)) |
30 | 4, 29 | absidd 14368 | . 2 ⊢ (𝜑 → (abs‘(1 / 2)) = (1 / 2)) |
31 | 8, 24, 30 | 3eqtrd 2808 | 1 ⊢ (𝜑 → (𝑇‘(𝐴 + (1 / 2))) = (1 / 2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1630 ∈ wcel 2144 class class class wbr 4784 ↦ cmpt 4861 ‘cfv 6031 (class class class)co 6792 ℝcr 10136 0cc0 10137 1c1 10138 + caddc 10140 < clt 10275 ≤ cle 10276 − cmin 10467 / cdiv 10885 2c2 11271 ℤcz 11578 ⌊cfl 12798 abscabs 14181 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 ax-pre-sup 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-2nd 7315 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-er 7895 df-en 8109 df-dom 8110 df-sdom 8111 df-sup 8503 df-inf 8504 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-div 10886 df-nn 11222 df-2 11280 df-3 11281 df-n0 11494 df-z 11579 df-uz 11888 df-rp 12035 df-fl 12800 df-seq 13008 df-exp 13067 df-cj 14046 df-re 14047 df-im 14048 df-sqrt 14182 df-abs 14183 |
This theorem is referenced by: knoppndvlem9 32842 |
Copyright terms: Public domain | W3C validator |