![]() |
Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dnizeq0 | Structured version Visualization version GIF version |
Description: The distance to nearest integer is zero for integers. (Contributed by Asger C. Ipsen, 15-Jun-2021.) |
Ref | Expression |
---|---|
dnizeq0.t | ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) |
dnizeq0.1 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
Ref | Expression |
---|---|
dnizeq0 | ⊢ (𝜑 → (𝑇‘𝐴) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dnizeq0.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
2 | 1 | zred 11695 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
3 | dnizeq0.t | . . . 4 ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) | |
4 | 3 | dnival 32789 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝑇‘𝐴) = (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) |
5 | 2, 4 | syl 17 | . 2 ⊢ (𝜑 → (𝑇‘𝐴) = (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) |
6 | halfre 11459 | . . . . . . . . . 10 ⊢ (1 / 2) ∈ ℝ | |
7 | 6 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → (1 / 2) ∈ ℝ) |
8 | 1, 7 | jca 555 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 ∈ ℤ ∧ (1 / 2) ∈ ℝ)) |
9 | flzadd 12842 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ (1 / 2) ∈ ℝ) → (⌊‘(𝐴 + (1 / 2))) = (𝐴 + (⌊‘(1 / 2)))) | |
10 | 8, 9 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (⌊‘(𝐴 + (1 / 2))) = (𝐴 + (⌊‘(1 / 2)))) |
11 | 6 | rexri 10310 | . . . . . . . . . . . . 13 ⊢ (1 / 2) ∈ ℝ* |
12 | 0re 10253 | . . . . . . . . . . . . . 14 ⊢ 0 ∈ ℝ | |
13 | halfgt0 11461 | . . . . . . . . . . . . . 14 ⊢ 0 < (1 / 2) | |
14 | 12, 6, 13 | ltleii 10373 | . . . . . . . . . . . . 13 ⊢ 0 ≤ (1 / 2) |
15 | halflt1 11463 | . . . . . . . . . . . . 13 ⊢ (1 / 2) < 1 | |
16 | 11, 14, 15 | 3pm3.2i 1424 | . . . . . . . . . . . 12 ⊢ ((1 / 2) ∈ ℝ* ∧ 0 ≤ (1 / 2) ∧ (1 / 2) < 1) |
17 | 0xr 10299 | . . . . . . . . . . . . . 14 ⊢ 0 ∈ ℝ* | |
18 | 1re 10252 | . . . . . . . . . . . . . . 15 ⊢ 1 ∈ ℝ | |
19 | 18 | rexri 10310 | . . . . . . . . . . . . . 14 ⊢ 1 ∈ ℝ* |
20 | 17, 19 | pm3.2i 470 | . . . . . . . . . . . . 13 ⊢ (0 ∈ ℝ* ∧ 1 ∈ ℝ*) |
21 | elico1 12432 | . . . . . . . . . . . . 13 ⊢ ((0 ∈ ℝ* ∧ 1 ∈ ℝ*) → ((1 / 2) ∈ (0[,)1) ↔ ((1 / 2) ∈ ℝ* ∧ 0 ≤ (1 / 2) ∧ (1 / 2) < 1))) | |
22 | 20, 21 | ax-mp 5 | . . . . . . . . . . . 12 ⊢ ((1 / 2) ∈ (0[,)1) ↔ ((1 / 2) ∈ ℝ* ∧ 0 ≤ (1 / 2) ∧ (1 / 2) < 1)) |
23 | 16, 22 | mpbir 221 | . . . . . . . . . . 11 ⊢ (1 / 2) ∈ (0[,)1) |
24 | 23 | a1i 11 | . . . . . . . . . 10 ⊢ (𝜑 → (1 / 2) ∈ (0[,)1)) |
25 | ico01fl0 12835 | . . . . . . . . . 10 ⊢ ((1 / 2) ∈ (0[,)1) → (⌊‘(1 / 2)) = 0) | |
26 | 24, 25 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → (⌊‘(1 / 2)) = 0) |
27 | 26 | oveq2d 6831 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 + (⌊‘(1 / 2))) = (𝐴 + 0)) |
28 | 2 | recnd 10281 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
29 | 28 | addid1d 10449 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 + 0) = 𝐴) |
30 | 27, 29 | eqtrd 2795 | . . . . . . 7 ⊢ (𝜑 → (𝐴 + (⌊‘(1 / 2))) = 𝐴) |
31 | 10, 30 | eqtrd 2795 | . . . . . 6 ⊢ (𝜑 → (⌊‘(𝐴 + (1 / 2))) = 𝐴) |
32 | 31 | oveq1d 6830 | . . . . 5 ⊢ (𝜑 → ((⌊‘(𝐴 + (1 / 2))) − 𝐴) = (𝐴 − 𝐴)) |
33 | 28 | subidd 10593 | . . . . 5 ⊢ (𝜑 → (𝐴 − 𝐴) = 0) |
34 | 32, 33 | eqtrd 2795 | . . . 4 ⊢ (𝜑 → ((⌊‘(𝐴 + (1 / 2))) − 𝐴) = 0) |
35 | 34 | fveq2d 6358 | . . 3 ⊢ (𝜑 → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) = (abs‘0)) |
36 | abs0 14245 | . . . 4 ⊢ (abs‘0) = 0 | |
37 | 36 | a1i 11 | . . 3 ⊢ (𝜑 → (abs‘0) = 0) |
38 | 35, 37 | eqtrd 2795 | . 2 ⊢ (𝜑 → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) = 0) |
39 | 5, 38 | eqtrd 2795 | 1 ⊢ (𝜑 → (𝑇‘𝐴) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2140 class class class wbr 4805 ↦ cmpt 4882 ‘cfv 6050 (class class class)co 6815 ℝcr 10148 0cc0 10149 1c1 10150 + caddc 10152 ℝ*cxr 10286 < clt 10287 ≤ cle 10288 − cmin 10479 / cdiv 10897 2c2 11283 ℤcz 11590 [,)cico 12391 ⌊cfl 12806 abscabs 14194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-cnex 10205 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 ax-pre-mulgt0 10226 ax-pre-sup 10227 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rmo 3059 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-om 7233 df-2nd 7336 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-er 7914 df-en 8125 df-dom 8126 df-sdom 8127 df-sup 8516 df-inf 8517 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-sub 10481 df-neg 10482 df-div 10898 df-nn 11234 df-2 11292 df-n0 11506 df-z 11591 df-uz 11901 df-rp 12047 df-ico 12395 df-fl 12808 df-seq 13017 df-exp 13076 df-cj 14059 df-re 14060 df-im 14061 df-sqrt 14195 df-abs 14196 |
This theorem is referenced by: knoppndvlem6 32836 knoppndvlem8 32838 |
Copyright terms: Public domain | W3C validator |