![]() |
Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dnibnd | Structured version Visualization version GIF version |
Description: The "distance to nearest integer" function is 1-Lipschitz continuous, i.e., is a short map. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
Ref | Expression |
---|---|
dnibnd.1 | ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) |
dnibnd.2 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
dnibnd.3 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
dnibnd | ⊢ (𝜑 → (abs‘((𝑇‘𝐵) − (𝑇‘𝐴))) ≤ (abs‘(𝐵 − 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dnibnd.1 | . . 3 ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) | |
2 | dnibnd.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | 2 | adantr 466 | . . 3 ⊢ ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) ≤ (⌊‘(𝐵 + (1 / 2)))) → 𝐴 ∈ ℝ) |
4 | dnibnd.3 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
5 | 4 | adantr 466 | . . 3 ⊢ ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) ≤ (⌊‘(𝐵 + (1 / 2)))) → 𝐵 ∈ ℝ) |
6 | simpr 471 | . . 3 ⊢ ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) ≤ (⌊‘(𝐵 + (1 / 2)))) → (⌊‘(𝐴 + (1 / 2))) ≤ (⌊‘(𝐵 + (1 / 2)))) | |
7 | 1, 3, 5, 6 | dnibndlem13 32817 | . 2 ⊢ ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) ≤ (⌊‘(𝐵 + (1 / 2)))) → (abs‘((𝑇‘𝐵) − (𝑇‘𝐴))) ≤ (abs‘(𝐵 − 𝐴))) |
8 | 1, 4 | dnicld2 32800 | . . . . . 6 ⊢ (𝜑 → (𝑇‘𝐵) ∈ ℝ) |
9 | 8 | recnd 10270 | . . . . 5 ⊢ (𝜑 → (𝑇‘𝐵) ∈ ℂ) |
10 | 1, 2 | dnicld2 32800 | . . . . . 6 ⊢ (𝜑 → (𝑇‘𝐴) ∈ ℝ) |
11 | 10 | recnd 10270 | . . . . 5 ⊢ (𝜑 → (𝑇‘𝐴) ∈ ℂ) |
12 | 9, 11 | abssubd 14400 | . . . 4 ⊢ (𝜑 → (abs‘((𝑇‘𝐵) − (𝑇‘𝐴))) = (abs‘((𝑇‘𝐴) − (𝑇‘𝐵)))) |
13 | 12 | adantr 466 | . . 3 ⊢ ((𝜑 ∧ (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2)))) → (abs‘((𝑇‘𝐵) − (𝑇‘𝐴))) = (abs‘((𝑇‘𝐴) − (𝑇‘𝐵)))) |
14 | 4 | adantr 466 | . . . . 5 ⊢ ((𝜑 ∧ (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2)))) → 𝐵 ∈ ℝ) |
15 | 2 | adantr 466 | . . . . 5 ⊢ ((𝜑 ∧ (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2)))) → 𝐴 ∈ ℝ) |
16 | simpr 471 | . . . . 5 ⊢ ((𝜑 ∧ (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2)))) → (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2)))) | |
17 | 1, 14, 15, 16 | dnibndlem13 32817 | . . . 4 ⊢ ((𝜑 ∧ (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2)))) → (abs‘((𝑇‘𝐴) − (𝑇‘𝐵))) ≤ (abs‘(𝐴 − 𝐵))) |
18 | 2 | recnd 10270 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
19 | 4 | recnd 10270 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
20 | 18, 19 | abssubd 14400 | . . . . 5 ⊢ (𝜑 → (abs‘(𝐴 − 𝐵)) = (abs‘(𝐵 − 𝐴))) |
21 | 20 | adantr 466 | . . . 4 ⊢ ((𝜑 ∧ (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2)))) → (abs‘(𝐴 − 𝐵)) = (abs‘(𝐵 − 𝐴))) |
22 | 17, 21 | breqtrd 4812 | . . 3 ⊢ ((𝜑 ∧ (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2)))) → (abs‘((𝑇‘𝐴) − (𝑇‘𝐵))) ≤ (abs‘(𝐵 − 𝐴))) |
23 | 13, 22 | eqbrtrd 4808 | . 2 ⊢ ((𝜑 ∧ (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2)))) → (abs‘((𝑇‘𝐵) − (𝑇‘𝐴))) ≤ (abs‘(𝐵 − 𝐴))) |
24 | halfre 11448 | . . . . . 6 ⊢ (1 / 2) ∈ ℝ | |
25 | 24 | a1i 11 | . . . . 5 ⊢ (𝜑 → (1 / 2) ∈ ℝ) |
26 | 2, 25 | readdcld 10271 | . . . 4 ⊢ (𝜑 → (𝐴 + (1 / 2)) ∈ ℝ) |
27 | reflcl 12805 | . . . 4 ⊢ ((𝐴 + (1 / 2)) ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ) | |
28 | 26, 27 | syl 17 | . . 3 ⊢ (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ) |
29 | 4, 25 | readdcld 10271 | . . . 4 ⊢ (𝜑 → (𝐵 + (1 / 2)) ∈ ℝ) |
30 | reflcl 12805 | . . . 4 ⊢ ((𝐵 + (1 / 2)) ∈ ℝ → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ) | |
31 | 29, 30 | syl 17 | . . 3 ⊢ (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ) |
32 | 28, 31 | letrid 10391 | . 2 ⊢ (𝜑 → ((⌊‘(𝐴 + (1 / 2))) ≤ (⌊‘(𝐵 + (1 / 2))) ∨ (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2))))) |
33 | 7, 23, 32 | mpjaodan 943 | 1 ⊢ (𝜑 → (abs‘((𝑇‘𝐵) − (𝑇‘𝐴))) ≤ (abs‘(𝐵 − 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 class class class wbr 4786 ↦ cmpt 4863 ‘cfv 6031 (class class class)co 6793 ℝcr 10137 1c1 10139 + caddc 10141 ≤ cle 10277 − cmin 10468 / cdiv 10886 2c2 11272 ⌊cfl 12799 abscabs 14182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 ax-pre-sup 10216 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-sup 8504 df-inf 8505 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-div 10887 df-nn 11223 df-2 11281 df-3 11282 df-n0 11495 df-z 11580 df-uz 11889 df-rp 12036 df-fl 12801 df-seq 13009 df-exp 13068 df-cj 14047 df-re 14048 df-im 14049 df-sqrt 14183 df-abs 14184 |
This theorem is referenced by: dnicn 32819 knoppndvlem11 32850 |
Copyright terms: Public domain | W3C validator |