![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmxpss | Structured version Visualization version GIF version |
Description: The domain of a Cartesian product is a subclass of the first factor. (Contributed by NM, 19-Mar-2007.) |
Ref | Expression |
---|---|
dmxpss | ⊢ dom (𝐴 × 𝐵) ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq2 5238 | . . . . . 6 ⊢ (𝐵 = ∅ → (𝐴 × 𝐵) = (𝐴 × ∅)) | |
2 | xp0 5662 | . . . . . 6 ⊢ (𝐴 × ∅) = ∅ | |
3 | 1, 2 | syl6eq 2774 | . . . . 5 ⊢ (𝐵 = ∅ → (𝐴 × 𝐵) = ∅) |
4 | 3 | dmeqd 5433 | . . . 4 ⊢ (𝐵 = ∅ → dom (𝐴 × 𝐵) = dom ∅) |
5 | dm0 5446 | . . . 4 ⊢ dom ∅ = ∅ | |
6 | 4, 5 | syl6eq 2774 | . . 3 ⊢ (𝐵 = ∅ → dom (𝐴 × 𝐵) = ∅) |
7 | 0ss 4080 | . . 3 ⊢ ∅ ⊆ 𝐴 | |
8 | 6, 7 | syl6eqss 3761 | . 2 ⊢ (𝐵 = ∅ → dom (𝐴 × 𝐵) ⊆ 𝐴) |
9 | dmxp 5451 | . . 3 ⊢ (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴) | |
10 | eqimss 3763 | . . 3 ⊢ (dom (𝐴 × 𝐵) = 𝐴 → dom (𝐴 × 𝐵) ⊆ 𝐴) | |
11 | 9, 10 | syl 17 | . 2 ⊢ (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) ⊆ 𝐴) |
12 | 8, 11 | pm2.61ine 2979 | 1 ⊢ dom (𝐴 × 𝐵) ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1596 ≠ wne 2896 ⊆ wss 3680 ∅c0 4023 × cxp 5216 dom cdm 5218 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-sep 4889 ax-nul 4897 ax-pr 5011 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-ral 3019 df-rab 3023 df-v 3306 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-nul 4024 df-if 4195 df-sn 4286 df-pr 4288 df-op 4292 df-br 4761 df-opab 4821 df-xp 5224 df-rel 5225 df-cnv 5226 df-dm 5228 |
This theorem is referenced by: rnxpss 5676 ssxpb 5678 funssxp 6174 dff3 6487 fparlem3 7399 fparlem4 7400 brdom3 9463 brdom5 9464 brdom4 9465 canthwelem 9585 pwfseqlem4 9597 uzrdgfni 12872 xptrrel 13841 rlimpm 14351 xpsc0 16343 xpsc1 16344 xpsfrnel2 16348 isohom 16558 ledm 17346 gsumxp 18496 dprd2d2 18564 tsmsxp 22080 dvbssntr 23784 esum2d 30385 poimirlem3 33644 rtrclex 38343 trclexi 38346 rtrclexi 38347 cnvtrcl0 38352 dmtrcl 38353 rp-imass 38484 rfovcnvf1od 38717 issmflem 41359 |
Copyright terms: Public domain | W3C validator |