Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmvlsiga Structured version   Visualization version   GIF version

Theorem dmvlsiga 30320
 Description: Lebesgue-measurable subsets of ℝ form a sigma-algebra. (Contributed by Thierry Arnoux, 10-Sep-2016.) (Revised by Thierry Arnoux, 24-Oct-2016.)
Assertion
Ref Expression
dmvlsiga dom vol ∈ (sigAlgebra‘ℝ)

Proof of Theorem dmvlsiga
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwssb 4644 . . 3 (dom vol ⊆ 𝒫 ℝ ↔ ∀𝑥 ∈ dom vol𝑥 ⊆ ℝ)
2 mblss 23345 . . 3 (𝑥 ∈ dom vol → 𝑥 ⊆ ℝ)
31, 2mprgbir 2956 . 2 dom vol ⊆ 𝒫 ℝ
4 rembl 23354 . . 3 ℝ ∈ dom vol
5 cmmbl 23348 . . . 4 (𝑥 ∈ dom vol → (ℝ ∖ 𝑥) ∈ dom vol)
65rgen 2951 . . 3 𝑥 ∈ dom vol(ℝ ∖ 𝑥) ∈ dom vol
7 nnenom 12819 . . . . . . . . 9 ℕ ≈ ω
87ensymi 8047 . . . . . . . 8 ω ≈ ℕ
9 domentr 8056 . . . . . . . 8 ((𝑥 ≼ ω ∧ ω ≈ ℕ) → 𝑥 ≼ ℕ)
108, 9mpan2 707 . . . . . . 7 (𝑥 ≼ ω → 𝑥 ≼ ℕ)
11 elpwi 4201 . . . . . . . 8 (𝑥 ∈ 𝒫 dom vol → 𝑥 ⊆ dom vol)
12 dfss3 3625 . . . . . . . 8 (𝑥 ⊆ dom vol ↔ ∀𝑦𝑥 𝑦 ∈ dom vol)
1311, 12sylib 208 . . . . . . 7 (𝑥 ∈ 𝒫 dom vol → ∀𝑦𝑥 𝑦 ∈ dom vol)
14 iunmbl2 23371 . . . . . . 7 ((𝑥 ≼ ℕ ∧ ∀𝑦𝑥 𝑦 ∈ dom vol) → 𝑦𝑥 𝑦 ∈ dom vol)
1510, 13, 14syl2anr 494 . . . . . 6 ((𝑥 ∈ 𝒫 dom vol ∧ 𝑥 ≼ ω) → 𝑦𝑥 𝑦 ∈ dom vol)
1615ex 449 . . . . 5 (𝑥 ∈ 𝒫 dom vol → (𝑥 ≼ ω → 𝑦𝑥 𝑦 ∈ dom vol))
17 uniiun 4605 . . . . . 6 𝑥 = 𝑦𝑥 𝑦
1817eleq1i 2721 . . . . 5 ( 𝑥 ∈ dom vol ↔ 𝑦𝑥 𝑦 ∈ dom vol)
1916, 18syl6ibr 242 . . . 4 (𝑥 ∈ 𝒫 dom vol → (𝑥 ≼ ω → 𝑥 ∈ dom vol))
2019rgen 2951 . . 3 𝑥 ∈ 𝒫 dom vol(𝑥 ≼ ω → 𝑥 ∈ dom vol)
214, 6, 203pm3.2i 1259 . 2 (ℝ ∈ dom vol ∧ ∀𝑥 ∈ dom vol(ℝ ∖ 𝑥) ∈ dom vol ∧ ∀𝑥 ∈ 𝒫 dom vol(𝑥 ≼ ω → 𝑥 ∈ dom vol))
22 reex 10065 . . . . 5 ℝ ∈ V
2322pwex 4878 . . . 4 𝒫 ℝ ∈ V
2423, 3ssexi 4836 . . 3 dom vol ∈ V
25 issiga 30302 . . 3 (dom vol ∈ V → (dom vol ∈ (sigAlgebra‘ℝ) ↔ (dom vol ⊆ 𝒫 ℝ ∧ (ℝ ∈ dom vol ∧ ∀𝑥 ∈ dom vol(ℝ ∖ 𝑥) ∈ dom vol ∧ ∀𝑥 ∈ 𝒫 dom vol(𝑥 ≼ ω → 𝑥 ∈ dom vol)))))
2624, 25ax-mp 5 . 2 (dom vol ∈ (sigAlgebra‘ℝ) ↔ (dom vol ⊆ 𝒫 ℝ ∧ (ℝ ∈ dom vol ∧ ∀𝑥 ∈ dom vol(ℝ ∖ 𝑥) ∈ dom vol ∧ ∀𝑥 ∈ 𝒫 dom vol(𝑥 ≼ ω → 𝑥 ∈ dom vol))))
273, 21, 26mpbir2an 975 1 dom vol ∈ (sigAlgebra‘ℝ)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1054   ∈ wcel 2030  ∀wral 2941  Vcvv 3231   ∖ cdif 3604   ⊆ wss 3607  𝒫 cpw 4191  ∪ cuni 4468  ∪ ciun 4552   class class class wbr 4685  dom cdm 5143  ‘cfv 5926  ωcom 7107   ≈ cen 7994   ≼ cdom 7995  ℝcr 9973  ℕcn 11058  volcvol 23278  sigAlgebracsiga 30298 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cc 9295  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-disj 4653  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-q 11827  df-rp 11871  df-xadd 11985  df-ioo 12217  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-rlim 14264  df-sum 14461  df-xmet 19787  df-met 19788  df-ovol 23279  df-vol 23280  df-siga 30299 This theorem is referenced by:  volmeas  30422  mbfmvolf  30456  elmbfmvol2  30457
 Copyright terms: Public domain W3C validator