![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmv | Structured version Visualization version GIF version |
Description: The domain of the universe is the universe. (Contributed by NM, 8-Aug-2003.) |
Ref | Expression |
---|---|
dmv | ⊢ dom V = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssv 3767 | . 2 ⊢ dom V ⊆ V | |
2 | dmi 5496 | . . 3 ⊢ dom I = V | |
3 | ssv 3767 | . . . 4 ⊢ I ⊆ V | |
4 | dmss 5479 | . . . 4 ⊢ ( I ⊆ V → dom I ⊆ dom V) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ dom I ⊆ dom V |
6 | 2, 5 | eqsstr3i 3778 | . 2 ⊢ V ⊆ dom V |
7 | 1, 6 | eqssi 3761 | 1 ⊢ dom V = V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 Vcvv 3341 ⊆ wss 3716 I cid 5174 dom cdm 5267 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pr 5056 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ral 3056 df-rex 3057 df-rab 3060 df-v 3343 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-sn 4323 df-pr 4325 df-op 4329 df-br 4806 df-opab 4866 df-id 5175 df-xp 5273 df-rel 5274 df-dm 5277 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |