![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmresi | Structured version Visualization version GIF version |
Description: The domain of a restricted identity function. (Contributed by NM, 27-Aug-2004.) |
Ref | Expression |
---|---|
dmresi | ⊢ dom ( I ↾ 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssv 3758 | . . 3 ⊢ 𝐴 ⊆ V | |
2 | dmi 5487 | . . 3 ⊢ dom I = V | |
3 | 1, 2 | sseqtr4i 3771 | . 2 ⊢ 𝐴 ⊆ dom I |
4 | ssdmres 5570 | . 2 ⊢ (𝐴 ⊆ dom I ↔ dom ( I ↾ 𝐴) = 𝐴) | |
5 | 3, 4 | mpbi 220 | 1 ⊢ dom ( I ↾ 𝐴) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1624 Vcvv 3332 ⊆ wss 3707 I cid 5165 dom cdm 5258 ↾ cres 5260 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-sep 4925 ax-nul 4933 ax-pr 5047 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ral 3047 df-rex 3048 df-rab 3051 df-v 3334 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-nul 4051 df-if 4223 df-sn 4314 df-pr 4316 df-op 4320 df-br 4797 df-opab 4857 df-id 5166 df-xp 5264 df-rel 5265 df-dm 5268 df-res 5270 |
This theorem is referenced by: fnresi 6161 idssxp 6162 iordsmo 7615 residfi 8404 hartogslem1 8604 dfac9 9142 hsmexlem5 9436 relexpdmg 13973 relexpfld 13980 relexpaddg 13984 dirdm 17427 islinds2 20346 lindsind2 20352 f1linds 20358 wilthlem3 24987 ausgrusgrb 26251 umgrres1 26397 usgrres1 26398 usgrexilem 26538 filnetlem3 32673 filnetlem4 32674 rclexi 38416 rtrclex 38418 rtrclexi 38422 cnvrcl0 38426 dfrtrcl5 38430 dfrcl2 38460 brfvrcld2 38478 iunrelexp0 38488 relexpiidm 38490 relexp01min 38499 idhe 38575 uspgrsprfo 42258 |
Copyright terms: Public domain | W3C validator |