![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmres | Structured version Visualization version GIF version |
Description: The domain of a restriction. Exercise 14 of [TakeutiZaring] p. 25. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
dmres | ⊢ dom (𝐴 ↾ 𝐵) = (𝐵 ∩ dom 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3234 | . . . . 5 ⊢ 𝑥 ∈ V | |
2 | 1 | eldm2 5354 | . . . 4 ⊢ (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵)) |
3 | 19.41v 1917 | . . . . 5 ⊢ (∃𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ (∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
4 | vex 3234 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
5 | 4 | opelres 5436 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵) ↔ (〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) |
6 | 5 | exbii 1814 | . . . . 5 ⊢ (∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵) ↔ ∃𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) |
7 | 1 | eldm2 5354 | . . . . . 6 ⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴) |
8 | 7 | anbi1i 731 | . . . . 5 ⊢ ((𝑥 ∈ dom 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ (∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) |
9 | 3, 6, 8 | 3bitr4i 292 | . . . 4 ⊢ (∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵) ↔ (𝑥 ∈ dom 𝐴 ∧ 𝑥 ∈ 𝐵)) |
10 | 2, 9 | bitr2i 265 | . . 3 ⊢ ((𝑥 ∈ dom 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ dom (𝐴 ↾ 𝐵)) |
11 | 10 | ineqri 3839 | . 2 ⊢ (dom 𝐴 ∩ 𝐵) = dom (𝐴 ↾ 𝐵) |
12 | incom 3838 | . 2 ⊢ (dom 𝐴 ∩ 𝐵) = (𝐵 ∩ dom 𝐴) | |
13 | 11, 12 | eqtr3i 2675 | 1 ⊢ dom (𝐴 ↾ 𝐵) = (𝐵 ∩ dom 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 = wceq 1523 ∃wex 1744 ∈ wcel 2030 ∩ cin 3606 〈cop 4216 dom cdm 5143 ↾ cres 5145 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-br 4686 df-opab 4746 df-xp 5149 df-dm 5153 df-res 5155 |
This theorem is referenced by: ssdmres 5455 dmresexg 5456 dmressnsn 5473 eldmeldmressn 5475 imadisj 5519 imainrect 5610 dmresv 5628 resdmres 5663 coeq0 5682 funimacnv 6008 fnresdisj 6039 fnres 6045 fresaunres2 6114 nfvres 6262 ssimaex 6302 fnreseql 6367 respreima 6384 fveqressseq 6395 ffvresb 6434 fsnunfv 6494 funfvima 6532 funiunfv 6546 offres 7205 fnwelem 7337 ressuppss 7359 ressuppssdif 7361 smores 7494 smores3 7495 smores2 7496 tz7.44-2 7548 tz7.44-3 7549 frfnom 7575 sbthlem5 8115 sbthlem7 8117 domss2 8160 imafi 8300 ordtypelem4 8467 wdomima2g 8532 r0weon 8873 imadomg 9394 dmaddpi 9750 dmmulpi 9751 ltweuz 12800 dmhashres 13169 limsupgle 14252 fvsetsid 15937 setsdm 15939 setsfun 15940 setsfun0 15941 setsres 15948 lubdm 17026 glbdm 17039 gsumzaddlem 18367 dprdcntz2 18483 lmres 21152 imacmp 21248 qtoptop2 21550 kqdisj 21583 metreslem 22214 setsmstopn 22330 ismbl 23340 mbfres 23456 dvres3a 23723 cpnres 23745 dvlipcn 23802 dvlip2 23803 c1lip3 23807 dvcnvrelem1 23825 dvcvx 23828 dvlog 24442 uhgrspansubgrlem 26227 wlkres 26623 trlsegvdeglem4 27201 hlimcaui 28221 funresdm1 29542 ftc2re 30804 dfrdg2 31825 sltres 31940 nolesgn2ores 31950 nodense 31967 nosupres 31978 nosupbnd1lem1 31979 nosupbnd2lem1 31986 nosupbnd2 31987 caures 33686 ssbnd 33717 mapfzcons1 37597 diophrw 37639 eldioph2lem1 37640 eldioph2lem2 37641 rp-imass 38382 dmresss 39750 limsupresxr 40316 liminfresxr 40317 fourierdlem93 40734 fouriersw 40766 sssmf 41268 eldmressn 41524 fnresfnco 41527 afvres 41573 setrec2lem1 42765 |
Copyright terms: Public domain | W3C validator |