![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmrecnq | Structured version Visualization version GIF version |
Description: Domain of reciprocal on positive fractions. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 10-Jul-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dmrecnq | ⊢ dom *Q = Q |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rq 9777 | . . . . . 6 ⊢ *Q = (◡ ·Q “ {1Q}) | |
2 | cnvimass 5520 | . . . . . 6 ⊢ (◡ ·Q “ {1Q}) ⊆ dom ·Q | |
3 | 1, 2 | eqsstri 3668 | . . . . 5 ⊢ *Q ⊆ dom ·Q |
4 | mulnqf 9809 | . . . . . 6 ⊢ ·Q :(Q × Q)⟶Q | |
5 | 4 | fdmi 6090 | . . . . 5 ⊢ dom ·Q = (Q × Q) |
6 | 3, 5 | sseqtri 3670 | . . . 4 ⊢ *Q ⊆ (Q × Q) |
7 | dmss 5355 | . . . 4 ⊢ (*Q ⊆ (Q × Q) → dom *Q ⊆ dom (Q × Q)) | |
8 | 6, 7 | ax-mp 5 | . . 3 ⊢ dom *Q ⊆ dom (Q × Q) |
9 | dmxpid 5377 | . . 3 ⊢ dom (Q × Q) = Q | |
10 | 8, 9 | sseqtri 3670 | . 2 ⊢ dom *Q ⊆ Q |
11 | recclnq 9826 | . . . . . . . 8 ⊢ (𝑥 ∈ Q → (*Q‘𝑥) ∈ Q) | |
12 | opelxpi 5182 | . . . . . . . 8 ⊢ ((𝑥 ∈ Q ∧ (*Q‘𝑥) ∈ Q) → 〈𝑥, (*Q‘𝑥)〉 ∈ (Q × Q)) | |
13 | 11, 12 | mpdan 703 | . . . . . . 7 ⊢ (𝑥 ∈ Q → 〈𝑥, (*Q‘𝑥)〉 ∈ (Q × Q)) |
14 | df-ov 6693 | . . . . . . . 8 ⊢ (𝑥 ·Q (*Q‘𝑥)) = ( ·Q ‘〈𝑥, (*Q‘𝑥)〉) | |
15 | recidnq 9825 | . . . . . . . 8 ⊢ (𝑥 ∈ Q → (𝑥 ·Q (*Q‘𝑥)) = 1Q) | |
16 | 14, 15 | syl5eqr 2699 | . . . . . . 7 ⊢ (𝑥 ∈ Q → ( ·Q ‘〈𝑥, (*Q‘𝑥)〉) = 1Q) |
17 | ffn 6083 | . . . . . . . 8 ⊢ ( ·Q :(Q × Q)⟶Q → ·Q Fn (Q × Q)) | |
18 | fniniseg 6378 | . . . . . . . 8 ⊢ ( ·Q Fn (Q × Q) → (〈𝑥, (*Q‘𝑥)〉 ∈ (◡ ·Q “ {1Q}) ↔ (〈𝑥, (*Q‘𝑥)〉 ∈ (Q × Q) ∧ ( ·Q ‘〈𝑥, (*Q‘𝑥)〉) = 1Q))) | |
19 | 4, 17, 18 | mp2b 10 | . . . . . . 7 ⊢ (〈𝑥, (*Q‘𝑥)〉 ∈ (◡ ·Q “ {1Q}) ↔ (〈𝑥, (*Q‘𝑥)〉 ∈ (Q × Q) ∧ ( ·Q ‘〈𝑥, (*Q‘𝑥)〉) = 1Q)) |
20 | 13, 16, 19 | sylanbrc 699 | . . . . . 6 ⊢ (𝑥 ∈ Q → 〈𝑥, (*Q‘𝑥)〉 ∈ (◡ ·Q “ {1Q})) |
21 | 20, 1 | syl6eleqr 2741 | . . . . 5 ⊢ (𝑥 ∈ Q → 〈𝑥, (*Q‘𝑥)〉 ∈ *Q) |
22 | df-br 4686 | . . . . 5 ⊢ (𝑥*Q(*Q‘𝑥) ↔ 〈𝑥, (*Q‘𝑥)〉 ∈ *Q) | |
23 | 21, 22 | sylibr 224 | . . . 4 ⊢ (𝑥 ∈ Q → 𝑥*Q(*Q‘𝑥)) |
24 | vex 3234 | . . . . 5 ⊢ 𝑥 ∈ V | |
25 | fvex 6239 | . . . . 5 ⊢ (*Q‘𝑥) ∈ V | |
26 | 24, 25 | breldm 5361 | . . . 4 ⊢ (𝑥*Q(*Q‘𝑥) → 𝑥 ∈ dom *Q) |
27 | 23, 26 | syl 17 | . . 3 ⊢ (𝑥 ∈ Q → 𝑥 ∈ dom *Q) |
28 | 27 | ssriv 3640 | . 2 ⊢ Q ⊆ dom *Q |
29 | 10, 28 | eqssi 3652 | 1 ⊢ dom *Q = Q |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ⊆ wss 3607 {csn 4210 〈cop 4216 class class class wbr 4685 × cxp 5141 ◡ccnv 5142 dom cdm 5143 “ cima 5146 Fn wfn 5921 ⟶wf 5922 ‘cfv 5926 (class class class)co 6690 Qcnq 9712 1Qc1q 9713 ·Q cmq 9716 *Qcrq 9717 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-omul 7610 df-er 7787 df-ni 9732 df-mi 9734 df-lti 9735 df-mpq 9769 df-enq 9771 df-nq 9772 df-erq 9773 df-mq 9775 df-1nq 9776 df-rq 9777 |
This theorem is referenced by: ltrnq 9839 reclem2pr 9908 |
Copyright terms: Public domain | W3C validator |