![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmplp | Structured version Visualization version GIF version |
Description: Domain of addition on positive reals. (Contributed by NM, 18-Nov-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dmplp | ⊢ dom +P = (P × P) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-plp 10007 | . 2 ⊢ +P = (𝑥 ∈ P, 𝑦 ∈ P ↦ {𝑧 ∣ ∃𝑢 ∈ 𝑥 ∃𝑣 ∈ 𝑦 𝑧 = (𝑢 +Q 𝑣)}) | |
2 | addclnq 9969 | . 2 ⊢ ((𝑢 ∈ Q ∧ 𝑣 ∈ Q) → (𝑢 +Q 𝑣) ∈ Q) | |
3 | 1, 2 | genpdm 10026 | 1 ⊢ dom +P = (P × P) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1631 × cxp 5247 dom cdm 5249 +Q cplq 9879 Pcnp 9883 +P cpp 9885 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-inf2 8702 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-oadd 7717 df-omul 7718 df-er 7896 df-ni 9896 df-pli 9897 df-mi 9898 df-lti 9899 df-plpq 9932 df-enq 9935 df-nq 9936 df-erq 9937 df-plq 9938 df-1nq 9940 df-np 10005 df-plp 10007 |
This theorem is referenced by: addcompr 10045 addasspr 10046 distrpr 10052 ltaddpr2 10059 ltapr 10069 addcanpr 10070 ltsrpr 10100 ltsosr 10117 mappsrpr 10131 |
Copyright terms: Public domain | W3C validator |