Mathbox for Jeff Madsen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmnnzd Structured version   Visualization version   GIF version

Theorem dmnnzd 34004
 Description: A domain has no zero-divisors (besides zero). (Contributed by Jeff Madsen, 19-Jun-2010.)
Hypotheses
Ref Expression
dmnnzd.1 𝐺 = (1st𝑅)
dmnnzd.2 𝐻 = (2nd𝑅)
dmnnzd.3 𝑋 = ran 𝐺
dmnnzd.4 𝑍 = (GId‘𝐺)
Assertion
Ref Expression
dmnnzd ((𝑅 ∈ Dmn ∧ (𝐴𝑋𝐵𝑋 ∧ (𝐴𝐻𝐵) = 𝑍)) → (𝐴 = 𝑍𝐵 = 𝑍))

Proof of Theorem dmnnzd
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmnnzd.1 . . . . . 6 𝐺 = (1st𝑅)
2 dmnnzd.2 . . . . . 6 𝐻 = (2nd𝑅)
3 dmnnzd.3 . . . . . 6 𝑋 = ran 𝐺
4 dmnnzd.4 . . . . . 6 𝑍 = (GId‘𝐺)
5 eqid 2651 . . . . . 6 (GId‘𝐻) = (GId‘𝐻)
61, 2, 3, 4, 5isdmn3 34003 . . . . 5 (𝑅 ∈ Dmn ↔ (𝑅 ∈ CRingOps ∧ (GId‘𝐻) ≠ 𝑍 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) = 𝑍 → (𝑎 = 𝑍𝑏 = 𝑍))))
76simp3bi 1098 . . . 4 (𝑅 ∈ Dmn → ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) = 𝑍 → (𝑎 = 𝑍𝑏 = 𝑍)))
8 oveq1 6697 . . . . . . 7 (𝑎 = 𝐴 → (𝑎𝐻𝑏) = (𝐴𝐻𝑏))
98eqeq1d 2653 . . . . . 6 (𝑎 = 𝐴 → ((𝑎𝐻𝑏) = 𝑍 ↔ (𝐴𝐻𝑏) = 𝑍))
10 eqeq1 2655 . . . . . . 7 (𝑎 = 𝐴 → (𝑎 = 𝑍𝐴 = 𝑍))
1110orbi1d 739 . . . . . 6 (𝑎 = 𝐴 → ((𝑎 = 𝑍𝑏 = 𝑍) ↔ (𝐴 = 𝑍𝑏 = 𝑍)))
129, 11imbi12d 333 . . . . 5 (𝑎 = 𝐴 → (((𝑎𝐻𝑏) = 𝑍 → (𝑎 = 𝑍𝑏 = 𝑍)) ↔ ((𝐴𝐻𝑏) = 𝑍 → (𝐴 = 𝑍𝑏 = 𝑍))))
13 oveq2 6698 . . . . . . 7 (𝑏 = 𝐵 → (𝐴𝐻𝑏) = (𝐴𝐻𝐵))
1413eqeq1d 2653 . . . . . 6 (𝑏 = 𝐵 → ((𝐴𝐻𝑏) = 𝑍 ↔ (𝐴𝐻𝐵) = 𝑍))
15 eqeq1 2655 . . . . . . 7 (𝑏 = 𝐵 → (𝑏 = 𝑍𝐵 = 𝑍))
1615orbi2d 738 . . . . . 6 (𝑏 = 𝐵 → ((𝐴 = 𝑍𝑏 = 𝑍) ↔ (𝐴 = 𝑍𝐵 = 𝑍)))
1714, 16imbi12d 333 . . . . 5 (𝑏 = 𝐵 → (((𝐴𝐻𝑏) = 𝑍 → (𝐴 = 𝑍𝑏 = 𝑍)) ↔ ((𝐴𝐻𝐵) = 𝑍 → (𝐴 = 𝑍𝐵 = 𝑍))))
1812, 17rspc2v 3353 . . . 4 ((𝐴𝑋𝐵𝑋) → (∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) = 𝑍 → (𝑎 = 𝑍𝑏 = 𝑍)) → ((𝐴𝐻𝐵) = 𝑍 → (𝐴 = 𝑍𝐵 = 𝑍))))
197, 18syl5com 31 . . 3 (𝑅 ∈ Dmn → ((𝐴𝑋𝐵𝑋) → ((𝐴𝐻𝐵) = 𝑍 → (𝐴 = 𝑍𝐵 = 𝑍))))
2019expd 451 . 2 (𝑅 ∈ Dmn → (𝐴𝑋 → (𝐵𝑋 → ((𝐴𝐻𝐵) = 𝑍 → (𝐴 = 𝑍𝐵 = 𝑍)))))
21203imp2 1304 1 ((𝑅 ∈ Dmn ∧ (𝐴𝑋𝐵𝑋 ∧ (𝐴𝐻𝐵) = 𝑍)) → (𝐴 = 𝑍𝐵 = 𝑍))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∨ wo 382   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030   ≠ wne 2823  ∀wral 2941  ran crn 5144  ‘cfv 5926  (class class class)co 6690  1st c1st 7208  2nd c2nd 7209  GIdcgi 27472  CRingOpsccring 33922  Dmncdmn 33976 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-1o 7605  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-grpo 27475  df-gid 27476  df-ginv 27477  df-ablo 27527  df-ass 33772  df-exid 33774  df-mgmOLD 33778  df-sgrOLD 33790  df-mndo 33796  df-rngo 33824  df-com2 33919  df-crngo 33923  df-idl 33939  df-pridl 33940  df-prrngo 33977  df-dmn 33978  df-igen 33989 This theorem is referenced by:  dmncan1  34005
 Copyright terms: Public domain W3C validator