Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmncan2 Structured version   Visualization version   GIF version

Theorem dmncan2 34187
Description: Cancellation law for domains. (Contributed by Jeff Madsen, 6-Jan-2011.)
Hypotheses
Ref Expression
dmncan.1 𝐺 = (1st𝑅)
dmncan.2 𝐻 = (2nd𝑅)
dmncan.3 𝑋 = ran 𝐺
dmncan.4 𝑍 = (GId‘𝐺)
Assertion
Ref Expression
dmncan2 (((𝑅 ∈ Dmn ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) ∧ 𝐶𝑍) → ((𝐴𝐻𝐶) = (𝐵𝐻𝐶) → 𝐴 = 𝐵))

Proof of Theorem dmncan2
StepHypRef Expression
1 dmncrng 34166 . . . 4 (𝑅 ∈ Dmn → 𝑅 ∈ CRingOps)
2 dmncan.1 . . . . . . 7 𝐺 = (1st𝑅)
3 dmncan.2 . . . . . . 7 𝐻 = (2nd𝑅)
4 dmncan.3 . . . . . . 7 𝑋 = ran 𝐺
52, 3, 4crngocom 34111 . . . . . 6 ((𝑅 ∈ CRingOps ∧ 𝐴𝑋𝐶𝑋) → (𝐴𝐻𝐶) = (𝐶𝐻𝐴))
653adant3r2 1199 . . . . 5 ((𝑅 ∈ CRingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐻𝐶) = (𝐶𝐻𝐴))
72, 3, 4crngocom 34111 . . . . . 6 ((𝑅 ∈ CRingOps ∧ 𝐵𝑋𝐶𝑋) → (𝐵𝐻𝐶) = (𝐶𝐻𝐵))
873adant3r1 1198 . . . . 5 ((𝑅 ∈ CRingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐵𝐻𝐶) = (𝐶𝐻𝐵))
96, 8eqeq12d 2773 . . . 4 ((𝑅 ∈ CRingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐻𝐶) = (𝐵𝐻𝐶) ↔ (𝐶𝐻𝐴) = (𝐶𝐻𝐵)))
101, 9sylan 489 . . 3 ((𝑅 ∈ Dmn ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐻𝐶) = (𝐵𝐻𝐶) ↔ (𝐶𝐻𝐴) = (𝐶𝐻𝐵)))
1110adantr 472 . 2 (((𝑅 ∈ Dmn ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) ∧ 𝐶𝑍) → ((𝐴𝐻𝐶) = (𝐵𝐻𝐶) ↔ (𝐶𝐻𝐴) = (𝐶𝐻𝐵)))
12 3anrot 1087 . . . 4 ((𝐶𝑋𝐴𝑋𝐵𝑋) ↔ (𝐴𝑋𝐵𝑋𝐶𝑋))
1312biimpri 218 . . 3 ((𝐴𝑋𝐵𝑋𝐶𝑋) → (𝐶𝑋𝐴𝑋𝐵𝑋))
14 dmncan.4 . . . 4 𝑍 = (GId‘𝐺)
152, 3, 4, 14dmncan1 34186 . . 3 (((𝑅 ∈ Dmn ∧ (𝐶𝑋𝐴𝑋𝐵𝑋)) ∧ 𝐶𝑍) → ((𝐶𝐻𝐴) = (𝐶𝐻𝐵) → 𝐴 = 𝐵))
1613, 15sylanl2 686 . 2 (((𝑅 ∈ Dmn ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) ∧ 𝐶𝑍) → ((𝐶𝐻𝐴) = (𝐶𝐻𝐵) → 𝐴 = 𝐵))
1711, 16sylbid 230 1 (((𝑅 ∈ Dmn ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) ∧ 𝐶𝑍) → ((𝐴𝐻𝐶) = (𝐵𝐻𝐶) → 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1630  wcel 2137  wne 2930  ran crn 5265  cfv 6047  (class class class)co 6811  1st c1st 7329  2nd c2nd 7330  GIdcgi 27651  CRingOpsccring 34103  Dmncdmn 34157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1986  ax-6 2052  ax-7 2088  ax-8 2139  ax-9 2146  ax-10 2166  ax-11 2181  ax-12 2194  ax-13 2389  ax-ext 2738  ax-rep 4921  ax-sep 4931  ax-nul 4939  ax-pow 4990  ax-pr 5053  ax-un 7112
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2045  df-eu 2609  df-mo 2610  df-clab 2745  df-cleq 2751  df-clel 2754  df-nfc 2889  df-ne 2931  df-ral 3053  df-rex 3054  df-reu 3055  df-rmo 3056  df-rab 3057  df-v 3340  df-sbc 3575  df-csb 3673  df-dif 3716  df-un 3718  df-in 3720  df-ss 3727  df-pss 3729  df-nul 4057  df-if 4229  df-pw 4302  df-sn 4320  df-pr 4322  df-tp 4324  df-op 4326  df-uni 4587  df-int 4626  df-iun 4672  df-br 4803  df-opab 4863  df-mpt 4880  df-tr 4903  df-id 5172  df-eprel 5177  df-po 5185  df-so 5186  df-fr 5223  df-we 5225  df-xp 5270  df-rel 5271  df-cnv 5272  df-co 5273  df-dm 5274  df-rn 5275  df-res 5276  df-ima 5277  df-ord 5885  df-on 5886  df-lim 5887  df-suc 5888  df-iota 6010  df-fun 6049  df-fn 6050  df-f 6051  df-f1 6052  df-fo 6053  df-f1o 6054  df-fv 6055  df-riota 6772  df-ov 6814  df-oprab 6815  df-mpt2 6816  df-om 7229  df-1st 7331  df-2nd 7332  df-1o 7727  df-er 7909  df-en 8120  df-dom 8121  df-sdom 8122  df-fin 8123  df-grpo 27654  df-gid 27655  df-ginv 27656  df-gdiv 27657  df-ablo 27706  df-ass 33953  df-exid 33955  df-mgmOLD 33959  df-sgrOLD 33971  df-mndo 33977  df-rngo 34005  df-com2 34100  df-crngo 34104  df-idl 34120  df-pridl 34121  df-prrngo 34158  df-dmn 34159  df-igen 34170
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator