![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmmulsr | Structured version Visualization version GIF version |
Description: Domain of multiplication on signed reals. (Contributed by NM, 25-Aug-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dmmulsr | ⊢ dom ·R = (R × R) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mr 9993 | . . . 4 ⊢ ·R = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~R ∧ 𝑦 = [〈𝑢, 𝑓〉] ~R ) ∧ 𝑧 = [〈((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑓)), ((𝑤 ·P 𝑓) +P (𝑣 ·P 𝑢))〉] ~R ))} | |
2 | 1 | dmeqi 5432 | . . 3 ⊢ dom ·R = dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~R ∧ 𝑦 = [〈𝑢, 𝑓〉] ~R ) ∧ 𝑧 = [〈((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑓)), ((𝑤 ·P 𝑓) +P (𝑣 ·P 𝑢))〉] ~R ))} |
3 | dmoprabss 6859 | . . 3 ⊢ dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~R ∧ 𝑦 = [〈𝑢, 𝑓〉] ~R ) ∧ 𝑧 = [〈((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑓)), ((𝑤 ·P 𝑓) +P (𝑣 ·P 𝑢))〉] ~R ))} ⊆ (R × R) | |
4 | 2, 3 | eqsstri 3741 | . 2 ⊢ dom ·R ⊆ (R × R) |
5 | 0nsr 10013 | . . 3 ⊢ ¬ ∅ ∈ R | |
6 | mulclsr 10018 | . . 3 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (𝑥 ·R 𝑦) ∈ R) | |
7 | 5, 6 | oprssdm 6932 | . 2 ⊢ (R × R) ⊆ dom ·R |
8 | 4, 7 | eqssi 3725 | 1 ⊢ dom ·R = (R × R) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 = wceq 1596 ∃wex 1817 ∈ wcel 2103 〈cop 4291 × cxp 5216 dom cdm 5218 (class class class)co 6765 {coprab 6766 [cec 7860 +P cpp 9796 ·P cmp 9797 ~R cer 9799 Rcnr 9800 ·R cmr 9805 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 ax-inf2 8651 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-ral 3019 df-rex 3020 df-reu 3021 df-rmo 3022 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-pss 3696 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-tp 4290 df-op 4292 df-uni 4545 df-int 4584 df-iun 4630 df-br 4761 df-opab 4821 df-mpt 4838 df-tr 4861 df-id 5128 df-eprel 5133 df-po 5139 df-so 5140 df-fr 5177 df-we 5179 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-pred 5793 df-ord 5839 df-on 5840 df-lim 5841 df-suc 5842 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-ov 6768 df-oprab 6769 df-mpt2 6770 df-om 7183 df-1st 7285 df-2nd 7286 df-wrecs 7527 df-recs 7588 df-rdg 7626 df-1o 7680 df-oadd 7684 df-omul 7685 df-er 7862 df-ec 7864 df-qs 7868 df-ni 9807 df-pli 9808 df-mi 9809 df-lti 9810 df-plpq 9843 df-mpq 9844 df-ltpq 9845 df-enq 9846 df-nq 9847 df-erq 9848 df-plq 9849 df-mq 9850 df-1nq 9851 df-rq 9852 df-ltnq 9853 df-np 9916 df-plp 9918 df-mp 9919 df-ltp 9920 df-enr 9990 df-nr 9991 df-mr 9993 |
This theorem is referenced by: mulcomsr 10023 mulasssr 10024 distrsr 10025 |
Copyright terms: Public domain | W3C validator |