![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmmptss | Structured version Visualization version GIF version |
Description: The domain of a mapping is a subset of its base class. (Contributed by Scott Fenton, 17-Jun-2013.) |
Ref | Expression |
---|---|
dmmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
dmmptss | ⊢ dom 𝐹 ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmmpt.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | 1 | dmmpt 5792 | . 2 ⊢ dom 𝐹 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
3 | ssrab2 3829 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} ⊆ 𝐴 | |
4 | 2, 3 | eqsstri 3777 | 1 ⊢ dom 𝐹 ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 ∈ wcel 2140 {crab 3055 Vcvv 3341 ⊆ wss 3716 ↦ cmpt 4882 dom cdm 5267 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pr 5056 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ral 3056 df-rab 3060 df-v 3343 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-sn 4323 df-pr 4325 df-op 4329 df-br 4806 df-opab 4866 df-mpt 4883 df-xp 5273 df-rel 5274 df-cnv 5275 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 |
This theorem is referenced by: mptrcl 6453 fvmptss 6456 fvmptex 6458 fvmptnf 6466 elfvmptrab1 6469 mptexg 6650 dmmpt2ssx 7405 curry1val 7440 curry2val 7444 tposssxp 7527 mptfi 8433 cnvimamptfin 8435 cantnfres 8750 mptct 9573 bitsval 15369 subcrcl 16698 arwval 16915 arwrcl 16916 coafval 16936 submrcl 17568 issubg 17816 isnsg 17845 cntzrcl 17981 gsumconst 18555 abvrcl 19044 psrass1lem 19600 psrass1 19628 psrass23l 19631 psrcom 19632 psrass23 19633 mpfrcl 19741 psropprmul 19831 coe1mul2 19862 isobs 20287 lmrcl 21258 1stcrestlem 21478 islocfin 21543 kgeni 21563 ptbasfi 21607 isxms2 22475 setsmstopn 22505 tngtopn 22676 isphtpc 23015 pcofval 23031 cfili 23287 cfilfcls 23293 rrxmval 23409 plybss 24170 ulmss 24371 dchrrcl 25186 gsummpt2co 30111 locfinreflem 30238 sitgclg 30735 cvmsrcl 31575 snmlval 31642 eldiophb 37841 elmnc 38227 itgocn 38255 issdrg 38288 submgmrcl 42311 dmmpt2ssx2 42644 |
Copyright terms: Public domain | W3C validator |