![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dmmptdf | Structured version Visualization version GIF version |
Description: The domain of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
dmmptdf.x | ⊢ Ⅎ𝑥𝜑 |
dmmptdf.a | ⊢ 𝐴 = (𝑥 ∈ 𝐵 ↦ 𝐶) |
dmmptdf.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ 𝑉) |
Ref | Expression |
---|---|
dmmptdf | ⊢ (𝜑 → dom 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmmptdf.x | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | dmmptdf.c | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ 𝑉) | |
3 | elex 3353 | . . . . . 6 ⊢ (𝐶 ∈ 𝑉 → 𝐶 ∈ V) | |
4 | 2, 3 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ V) |
5 | 4 | ex 449 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵 → 𝐶 ∈ V)) |
6 | 1, 5 | ralrimi 3096 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝐶 ∈ V) |
7 | rabid2 3258 | . . 3 ⊢ (𝐵 = {𝑥 ∈ 𝐵 ∣ 𝐶 ∈ V} ↔ ∀𝑥 ∈ 𝐵 𝐶 ∈ V) | |
8 | 6, 7 | sylibr 224 | . 2 ⊢ (𝜑 → 𝐵 = {𝑥 ∈ 𝐵 ∣ 𝐶 ∈ V}) |
9 | dmmptdf.a | . . 3 ⊢ 𝐴 = (𝑥 ∈ 𝐵 ↦ 𝐶) | |
10 | 9 | dmmpt 5792 | . 2 ⊢ dom 𝐴 = {𝑥 ∈ 𝐵 ∣ 𝐶 ∈ V} |
11 | 8, 10 | syl6reqr 2814 | 1 ⊢ (𝜑 → dom 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 Ⅎwnf 1857 ∈ wcel 2140 ∀wral 3051 {crab 3055 Vcvv 3341 ↦ cmpt 4882 dom cdm 5267 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pr 5056 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ral 3056 df-rab 3060 df-v 3343 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-sn 4323 df-pr 4325 df-op 4329 df-br 4806 df-opab 4866 df-mpt 4883 df-xp 5273 df-rel 5274 df-cnv 5275 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 |
This theorem is referenced by: smfpimltmpt 41480 smfpimltxrmpt 41492 smfadd 41498 smfpimgtmpt 41514 smfpimgtxrmpt 41517 smfpimioompt 41518 smfrec 41521 smfmul 41527 smfmulc1 41528 smffmpt 41536 smfsupmpt 41546 smfinfmpt 41550 smflimsupmpt 41560 smfliminfmpt 41563 |
Copyright terms: Public domain | W3C validator |