![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmgmdivn0 | Structured version Visualization version GIF version |
Description: Lemma for lgamf 24959. (Contributed by Mario Carneiro, 3-Jul-2017.) |
Ref | Expression |
---|---|
dmgmn0.a | ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) |
dmgmdivn0.a | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
Ref | Expression |
---|---|
dmgmdivn0 | ⊢ (𝜑 → ((𝐴 / 𝑀) + 1) ≠ 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmgmn0.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) | |
2 | 1 | eldifad 3719 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
3 | dmgmdivn0.a | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
4 | 3 | nncnd 11220 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
5 | 3 | nnne0d 11249 | . . . 4 ⊢ (𝜑 → 𝑀 ≠ 0) |
6 | 2, 4, 4, 5 | divdird 11023 | . . 3 ⊢ (𝜑 → ((𝐴 + 𝑀) / 𝑀) = ((𝐴 / 𝑀) + (𝑀 / 𝑀))) |
7 | 4, 5 | dividd 10983 | . . . 4 ⊢ (𝜑 → (𝑀 / 𝑀) = 1) |
8 | 7 | oveq2d 6821 | . . 3 ⊢ (𝜑 → ((𝐴 / 𝑀) + (𝑀 / 𝑀)) = ((𝐴 / 𝑀) + 1)) |
9 | 6, 8 | eqtrd 2786 | . 2 ⊢ (𝜑 → ((𝐴 + 𝑀) / 𝑀) = ((𝐴 / 𝑀) + 1)) |
10 | 2, 4 | addcld 10243 | . . 3 ⊢ (𝜑 → (𝐴 + 𝑀) ∈ ℂ) |
11 | 3 | nnnn0d 11535 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
12 | dmgmaddn0 24940 | . . . 4 ⊢ ((𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ∧ 𝑀 ∈ ℕ0) → (𝐴 + 𝑀) ≠ 0) | |
13 | 1, 11, 12 | syl2anc 696 | . . 3 ⊢ (𝜑 → (𝐴 + 𝑀) ≠ 0) |
14 | 10, 4, 13, 5 | divne0d 11001 | . 2 ⊢ (𝜑 → ((𝐴 + 𝑀) / 𝑀) ≠ 0) |
15 | 9, 14 | eqnetrrd 2992 | 1 ⊢ (𝜑 → ((𝐴 / 𝑀) + 1) ≠ 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2131 ≠ wne 2924 ∖ cdif 3704 (class class class)co 6805 ℂcc 10118 0cc0 10120 1c1 10121 + caddc 10123 / cdiv 10868 ℕcn 11204 ℕ0cn0 11476 ℤcz 11561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 ax-resscn 10177 ax-1cn 10178 ax-icn 10179 ax-addcl 10180 ax-addrcl 10181 ax-mulcl 10182 ax-mulrcl 10183 ax-mulcom 10184 ax-addass 10185 ax-mulass 10186 ax-distr 10187 ax-i2m1 10188 ax-1ne0 10189 ax-1rid 10190 ax-rnegex 10191 ax-rrecex 10192 ax-cnre 10193 ax-pre-lttri 10194 ax-pre-lttrn 10195 ax-pre-ltadd 10196 ax-pre-mulgt0 10197 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-nel 3028 df-ral 3047 df-rex 3048 df-reu 3049 df-rmo 3050 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-pss 3723 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4581 df-iun 4666 df-br 4797 df-opab 4857 df-mpt 4874 df-tr 4897 df-id 5166 df-eprel 5171 df-po 5179 df-so 5180 df-fr 5217 df-we 5219 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-pred 5833 df-ord 5879 df-on 5880 df-lim 5881 df-suc 5882 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-riota 6766 df-ov 6808 df-oprab 6809 df-mpt2 6810 df-om 7223 df-wrecs 7568 df-recs 7629 df-rdg 7667 df-er 7903 df-en 8114 df-dom 8115 df-sdom 8116 df-pnf 10260 df-mnf 10261 df-xr 10262 df-ltxr 10263 df-le 10264 df-sub 10452 df-neg 10453 df-div 10869 df-nn 11205 df-n0 11477 df-z 11562 |
This theorem is referenced by: lgamgulmlem2 24947 lgamgulmlem3 24948 lgamgulmlem5 24950 lgamgulmlem6 24951 lgamgulm2 24953 lgamcvg2 24972 gamcvg 24973 gamcvg2lem 24976 regamcl 24978 iprodgam 31927 |
Copyright terms: Public domain | W3C validator |