MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmgmdivn0 Structured version   Visualization version   GIF version

Theorem dmgmdivn0 24945
Description: Lemma for lgamf 24959. (Contributed by Mario Carneiro, 3-Jul-2017.)
Hypotheses
Ref Expression
dmgmn0.a (𝜑𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
dmgmdivn0.a (𝜑𝑀 ∈ ℕ)
Assertion
Ref Expression
dmgmdivn0 (𝜑 → ((𝐴 / 𝑀) + 1) ≠ 0)

Proof of Theorem dmgmdivn0
StepHypRef Expression
1 dmgmn0.a . . . . 5 (𝜑𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
21eldifad 3719 . . . 4 (𝜑𝐴 ∈ ℂ)
3 dmgmdivn0.a . . . . 5 (𝜑𝑀 ∈ ℕ)
43nncnd 11220 . . . 4 (𝜑𝑀 ∈ ℂ)
53nnne0d 11249 . . . 4 (𝜑𝑀 ≠ 0)
62, 4, 4, 5divdird 11023 . . 3 (𝜑 → ((𝐴 + 𝑀) / 𝑀) = ((𝐴 / 𝑀) + (𝑀 / 𝑀)))
74, 5dividd 10983 . . . 4 (𝜑 → (𝑀 / 𝑀) = 1)
87oveq2d 6821 . . 3 (𝜑 → ((𝐴 / 𝑀) + (𝑀 / 𝑀)) = ((𝐴 / 𝑀) + 1))
96, 8eqtrd 2786 . 2 (𝜑 → ((𝐴 + 𝑀) / 𝑀) = ((𝐴 / 𝑀) + 1))
102, 4addcld 10243 . . 3 (𝜑 → (𝐴 + 𝑀) ∈ ℂ)
113nnnn0d 11535 . . . 4 (𝜑𝑀 ∈ ℕ0)
12 dmgmaddn0 24940 . . . 4 ((𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ∧ 𝑀 ∈ ℕ0) → (𝐴 + 𝑀) ≠ 0)
131, 11, 12syl2anc 696 . . 3 (𝜑 → (𝐴 + 𝑀) ≠ 0)
1410, 4, 13, 5divne0d 11001 . 2 (𝜑 → ((𝐴 + 𝑀) / 𝑀) ≠ 0)
159, 14eqnetrrd 2992 1 (𝜑 → ((𝐴 / 𝑀) + 1) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2131  wne 2924  cdif 3704  (class class class)co 6805  cc 10118  0cc0 10120  1c1 10121   + caddc 10123   / cdiv 10868  cn 11204  0cn0 11476  cz 11561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-er 7903  df-en 8114  df-dom 8115  df-sdom 8116  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-div 10869  df-nn 11205  df-n0 11477  df-z 11562
This theorem is referenced by:  lgamgulmlem2  24947  lgamgulmlem3  24948  lgamgulmlem5  24950  lgamgulmlem6  24951  lgamgulm2  24953  lgamcvg2  24972  gamcvg  24973  gamcvg2lem  24976  regamcl  24978  iprodgam  31927
  Copyright terms: Public domain W3C validator