![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmgmaddnn0 | Structured version Visualization version GIF version |
Description: If 𝐴 is not a nonpositive integer and 𝑁 is a nonnegative integer, then 𝐴 + 𝑁 is also not a nonpositive integer. (Contributed by Mario Carneiro, 6-Jul-2017.) |
Ref | Expression |
---|---|
dmgmn0.a | ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) |
dmgmaddnn0.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
Ref | Expression |
---|---|
dmgmaddnn0 | ⊢ (𝜑 → (𝐴 + 𝑁) ∈ (ℂ ∖ (ℤ ∖ ℕ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmgmn0.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) | |
2 | 1 | eldifad 3619 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
3 | dmgmaddnn0.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
4 | 3 | nn0cnd 11391 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
5 | 2, 4 | addcld 10097 | . 2 ⊢ (𝜑 → (𝐴 + 𝑁) ∈ ℂ) |
6 | eldmgm 24793 | . . . . 5 ⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↔ (𝐴 ∈ ℂ ∧ ¬ -𝐴 ∈ ℕ0)) | |
7 | 1, 6 | sylib 208 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ ¬ -𝐴 ∈ ℕ0)) |
8 | 7 | simprd 478 | . . 3 ⊢ (𝜑 → ¬ -𝐴 ∈ ℕ0) |
9 | 2, 4 | negdi2d 10444 | . . . . . . 7 ⊢ (𝜑 → -(𝐴 + 𝑁) = (-𝐴 − 𝑁)) |
10 | 9 | oveq1d 6705 | . . . . . 6 ⊢ (𝜑 → (-(𝐴 + 𝑁) + 𝑁) = ((-𝐴 − 𝑁) + 𝑁)) |
11 | 2 | negcld 10417 | . . . . . . 7 ⊢ (𝜑 → -𝐴 ∈ ℂ) |
12 | 11, 4 | npcand 10434 | . . . . . 6 ⊢ (𝜑 → ((-𝐴 − 𝑁) + 𝑁) = -𝐴) |
13 | 10, 12 | eqtrd 2685 | . . . . 5 ⊢ (𝜑 → (-(𝐴 + 𝑁) + 𝑁) = -𝐴) |
14 | 13 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ -(𝐴 + 𝑁) ∈ ℕ0) → (-(𝐴 + 𝑁) + 𝑁) = -𝐴) |
15 | simpr 476 | . . . . 5 ⊢ ((𝜑 ∧ -(𝐴 + 𝑁) ∈ ℕ0) → -(𝐴 + 𝑁) ∈ ℕ0) | |
16 | 3 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ -(𝐴 + 𝑁) ∈ ℕ0) → 𝑁 ∈ ℕ0) |
17 | 15, 16 | nn0addcld 11393 | . . . 4 ⊢ ((𝜑 ∧ -(𝐴 + 𝑁) ∈ ℕ0) → (-(𝐴 + 𝑁) + 𝑁) ∈ ℕ0) |
18 | 14, 17 | eqeltrrd 2731 | . . 3 ⊢ ((𝜑 ∧ -(𝐴 + 𝑁) ∈ ℕ0) → -𝐴 ∈ ℕ0) |
19 | 8, 18 | mtand 692 | . 2 ⊢ (𝜑 → ¬ -(𝐴 + 𝑁) ∈ ℕ0) |
20 | eldmgm 24793 | . 2 ⊢ ((𝐴 + 𝑁) ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↔ ((𝐴 + 𝑁) ∈ ℂ ∧ ¬ -(𝐴 + 𝑁) ∈ ℕ0)) | |
21 | 5, 19, 20 | sylanbrc 699 | 1 ⊢ (𝜑 → (𝐴 + 𝑁) ∈ (ℂ ∖ (ℤ ∖ ℕ))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∖ cdif 3604 (class class class)co 6690 ℂcc 9972 + caddc 9977 − cmin 10304 -cneg 10305 ℕcn 11058 ℕ0cn0 11330 ℤcz 11415 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-n0 11331 df-z 11416 |
This theorem is referenced by: lgamcvg2 24826 gamp1 24829 |
Copyright terms: Public domain | W3C validator |