![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmex | Structured version Visualization version GIF version |
Description: The domain of a set is a set. Corollary 6.8(2) of [TakeutiZaring] p. 26. (Contributed by NM, 7-Jul-2008.) |
Ref | Expression |
---|---|
dmex.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
dmex | ⊢ dom 𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | dmexg 7244 | . 2 ⊢ (𝐴 ∈ V → dom 𝐴 ∈ V) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ dom 𝐴 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2145 Vcvv 3351 dom cdm 5249 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pr 5034 ax-un 7096 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-rex 3067 df-rab 3070 df-v 3353 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-opab 4847 df-cnv 5257 df-dm 5259 df-rn 5260 |
This theorem is referenced by: elxp4 7257 ofmres 7311 1stval 7317 fo1st 7335 frxp 7438 tfrlem8 7633 mapprc 8013 ixpprc 8083 bren 8118 brdomg 8119 ctex 8124 fundmen 8183 domssex 8277 mapen 8280 ssenen 8290 hartogslem1 8603 brwdomn0 8630 unxpwdom2 8649 ixpiunwdom 8652 oemapwe 8755 cantnffval2 8756 r0weon 9035 fseqenlem2 9048 acndom 9074 acndom2 9077 dfac9 9160 ackbij2lem2 9264 ackbij2lem3 9265 cfsmolem 9294 coftr 9297 dcomex 9471 axdc3lem4 9477 axdclem 9543 axdclem2 9544 fodomb 9550 brdom3 9552 brdom5 9553 brdom4 9554 hashfacen 13440 shftfval 14018 prdsval 16323 isoval 16632 issubc 16702 prfval 17047 symgbas 18007 psgnghm2 20142 dfac14 21642 indishmph 21822 ufldom 21986 tsmsval2 22153 dvmptadd 23943 dvmptmul 23944 dvmptco 23955 taylfval 24333 usgrsizedg 26329 usgredgleordALT 26349 vtxdun 26612 vtxdlfgrval 26616 vtxd0nedgb 26619 vtxdushgrfvedglem 26620 vtxdushgrfvedg 26621 vtxdginducedm1lem4 26673 vtxdginducedm1 26674 ewlksfval 26732 wksfval 26740 wksv 26750 wlkiswwlksupgr2 27011 vdn0conngrumgrv2 27376 vdgn1frgrv2 27478 hmoval 28005 esum2d 30495 sitmval 30751 bnj893 31336 dfrecs2 32394 dfrdg4 32395 cnfinltrel 33578 indexdom 33861 dibfval 36951 aomclem1 38150 dfac21 38162 trclexi 38453 rtrclexi 38454 dfrtrcl5 38462 dfrcl2 38492 dvsubf 40646 dvdivf 40655 fouriersw 40965 smflimlem1 41499 smflimlem6 41504 smfpimcc 41534 smfsuplem1 41537 smfinflem 41543 smflimsuplem1 41546 smflimsuplem2 41547 smflimsuplem3 41548 smflimsuplem4 41549 smflimsuplem5 41550 smflimsuplem7 41552 smfliminflem 41556 upwlksfval 42244 |
Copyright terms: Public domain | W3C validator |