MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmdprdsplit2 Structured version   Visualization version   GIF version

Theorem dmdprdsplit2 18653
Description: The direct product splits into the direct product of any partition of the index set. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
dprdsplit.2 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
dprdsplit.i (𝜑 → (𝐶𝐷) = ∅)
dprdsplit.u (𝜑𝐼 = (𝐶𝐷))
dmdprdsplit.z 𝑍 = (Cntz‘𝐺)
dmdprdsplit.0 0 = (0g𝐺)
dmdprdsplit2.1 (𝜑𝐺dom DProd (𝑆𝐶))
dmdprdsplit2.2 (𝜑𝐺dom DProd (𝑆𝐷))
dmdprdsplit2.3 (𝜑 → (𝐺 DProd (𝑆𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆𝐷))))
dmdprdsplit2.4 (𝜑 → ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) = { 0 })
Assertion
Ref Expression
dmdprdsplit2 (𝜑𝐺dom DProd 𝑆)

Proof of Theorem dmdprdsplit2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmdprdsplit.z . 2 𝑍 = (Cntz‘𝐺)
2 dmdprdsplit.0 . 2 0 = (0g𝐺)
3 eqid 2771 . 2 (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺))
4 dmdprdsplit2.1 . . 3 (𝜑𝐺dom DProd (𝑆𝐶))
5 dprdgrp 18612 . . 3 (𝐺dom DProd (𝑆𝐶) → 𝐺 ∈ Grp)
64, 5syl 17 . 2 (𝜑𝐺 ∈ Grp)
7 dprdsplit.u . . 3 (𝜑𝐼 = (𝐶𝐷))
8 dprdsplit.2 . . . . . . 7 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
9 ssun1 3927 . . . . . . . 8 𝐶 ⊆ (𝐶𝐷)
109, 7syl5sseqr 3803 . . . . . . 7 (𝜑𝐶𝐼)
118, 10fssresd 6211 . . . . . 6 (𝜑 → (𝑆𝐶):𝐶⟶(SubGrp‘𝐺))
12 fdm 6191 . . . . . 6 ((𝑆𝐶):𝐶⟶(SubGrp‘𝐺) → dom (𝑆𝐶) = 𝐶)
1311, 12syl 17 . . . . 5 (𝜑 → dom (𝑆𝐶) = 𝐶)
144, 13dprddomcld 18608 . . . 4 (𝜑𝐶 ∈ V)
15 dmdprdsplit2.2 . . . . 5 (𝜑𝐺dom DProd (𝑆𝐷))
16 ssun2 3928 . . . . . . . 8 𝐷 ⊆ (𝐶𝐷)
1716, 7syl5sseqr 3803 . . . . . . 7 (𝜑𝐷𝐼)
188, 17fssresd 6211 . . . . . 6 (𝜑 → (𝑆𝐷):𝐷⟶(SubGrp‘𝐺))
19 fdm 6191 . . . . . 6 ((𝑆𝐷):𝐷⟶(SubGrp‘𝐺) → dom (𝑆𝐷) = 𝐷)
2018, 19syl 17 . . . . 5 (𝜑 → dom (𝑆𝐷) = 𝐷)
2115, 20dprddomcld 18608 . . . 4 (𝜑𝐷 ∈ V)
22 unexg 7106 . . . 4 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝐶𝐷) ∈ V)
2314, 21, 22syl2anc 573 . . 3 (𝜑 → (𝐶𝐷) ∈ V)
247, 23eqeltrd 2850 . 2 (𝜑𝐼 ∈ V)
257eleq2d 2836 . . . . 5 (𝜑 → (𝑥𝐼𝑥 ∈ (𝐶𝐷)))
26 elun 3904 . . . . 5 (𝑥 ∈ (𝐶𝐷) ↔ (𝑥𝐶𝑥𝐷))
2725, 26syl6bb 276 . . . 4 (𝜑 → (𝑥𝐼 ↔ (𝑥𝐶𝑥𝐷)))
28 dprdsplit.i . . . . . . . 8 (𝜑 → (𝐶𝐷) = ∅)
29 dmdprdsplit2.3 . . . . . . . 8 (𝜑 → (𝐺 DProd (𝑆𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆𝐷))))
30 dmdprdsplit2.4 . . . . . . . 8 (𝜑 → ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) = { 0 })
318, 28, 7, 1, 2, 4, 15, 29, 30, 3dmdprdsplit2lem 18652 . . . . . . 7 ((𝜑𝑥𝐶) → ((𝑦𝐼 → (𝑥𝑦 → (𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)))) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 }))
32 incom 3956 . . . . . . . . 9 (𝐶𝐷) = (𝐷𝐶)
3332, 28syl5eqr 2819 . . . . . . . 8 (𝜑 → (𝐷𝐶) = ∅)
34 uncom 3908 . . . . . . . . 9 (𝐶𝐷) = (𝐷𝐶)
357, 34syl6eq 2821 . . . . . . . 8 (𝜑𝐼 = (𝐷𝐶))
36 dprdsubg 18631 . . . . . . . . . 10 (𝐺dom DProd (𝑆𝐶) → (𝐺 DProd (𝑆𝐶)) ∈ (SubGrp‘𝐺))
374, 36syl 17 . . . . . . . . 9 (𝜑 → (𝐺 DProd (𝑆𝐶)) ∈ (SubGrp‘𝐺))
38 dprdsubg 18631 . . . . . . . . . 10 (𝐺dom DProd (𝑆𝐷) → (𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺))
3915, 38syl 17 . . . . . . . . 9 (𝜑 → (𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺))
401, 37, 39, 29cntzrecd 18298 . . . . . . . 8 (𝜑 → (𝐺 DProd (𝑆𝐷)) ⊆ (𝑍‘(𝐺 DProd (𝑆𝐶))))
41 incom 3956 . . . . . . . . 9 ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) = ((𝐺 DProd (𝑆𝐷)) ∩ (𝐺 DProd (𝑆𝐶)))
4241, 30syl5eqr 2819 . . . . . . . 8 (𝜑 → ((𝐺 DProd (𝑆𝐷)) ∩ (𝐺 DProd (𝑆𝐶))) = { 0 })
438, 33, 35, 1, 2, 15, 4, 40, 42, 3dmdprdsplit2lem 18652 . . . . . . 7 ((𝜑𝑥𝐷) → ((𝑦𝐼 → (𝑥𝑦 → (𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)))) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 }))
4431, 43jaodan 938 . . . . . 6 ((𝜑 ∧ (𝑥𝐶𝑥𝐷)) → ((𝑦𝐼 → (𝑥𝑦 → (𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)))) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 }))
4544simpld 482 . . . . 5 ((𝜑 ∧ (𝑥𝐶𝑥𝐷)) → (𝑦𝐼 → (𝑥𝑦 → (𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)))))
4645ex 397 . . . 4 (𝜑 → ((𝑥𝐶𝑥𝐷) → (𝑦𝐼 → (𝑥𝑦 → (𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦))))))
4727, 46sylbid 230 . . 3 (𝜑 → (𝑥𝐼 → (𝑦𝐼 → (𝑥𝑦 → (𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦))))))
48473imp2 1442 . 2 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → (𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)))
4927biimpa 462 . . 3 ((𝜑𝑥𝐼) → (𝑥𝐶𝑥𝐷))
5031simprd 483 . . . 4 ((𝜑𝑥𝐶) → ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 })
5143simprd 483 . . . 4 ((𝜑𝑥𝐷) → ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 })
5250, 51jaodan 938 . . 3 ((𝜑 ∧ (𝑥𝐶𝑥𝐷)) → ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 })
5349, 52syldan 579 . 2 ((𝜑𝑥𝐼) → ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 })
541, 2, 3, 6, 24, 8, 48, 53dmdprdd 18606 1 (𝜑𝐺dom DProd 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  wo 834   = wceq 1631  wcel 2145  wne 2943  Vcvv 3351  cdif 3720  cun 3721  cin 3722  wss 3723  c0 4063  {csn 4316   cuni 4574   class class class wbr 4786  dom cdm 5249  cres 5251  cima 5252  wf 6027  cfv 6031  (class class class)co 6793  0gc0g 16308  mrClscmrc 16451  Grpcgrp 17630  SubGrpcsubg 17796  Cntzccntz 17955   DProd cdprd 18600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-of 7044  df-om 7213  df-1st 7315  df-2nd 7316  df-supp 7447  df-tpos 7504  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-er 7896  df-map 8011  df-ixp 8063  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fsupp 8432  df-oi 8571  df-card 8965  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-2 11281  df-n0 11495  df-z 11580  df-uz 11889  df-fz 12534  df-fzo 12674  df-seq 13009  df-hash 13322  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-0g 16310  df-gsum 16311  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-mhm 17543  df-submnd 17544  df-grp 17633  df-minusg 17634  df-sbg 17635  df-mulg 17749  df-subg 17799  df-ghm 17866  df-gim 17909  df-cntz 17957  df-oppg 17983  df-lsm 18258  df-cmn 18402  df-dprd 18602
This theorem is referenced by:  dmdprdsplit  18654  pgpfaclem1  18688
  Copyright terms: Public domain W3C validator