MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmdprdd Structured version   Visualization version   GIF version

Theorem dmdprdd 18598
Description: Show that a given family is a direct product decomposition. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.)
Hypotheses
Ref Expression
dmdprd.z 𝑍 = (Cntz‘𝐺)
dmdprd.0 0 = (0g𝐺)
dmdprd.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
dmdprdd.1 (𝜑𝐺 ∈ Grp)
dmdprdd.2 (𝜑𝐼𝑉)
dmdprdd.3 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
dmdprdd.4 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → (𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)))
dmdprdd.5 ((𝜑𝑥𝐼) → ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 })
Assertion
Ref Expression
dmdprdd (𝜑𝐺dom DProd 𝑆)
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝐼,𝑦   𝜑,𝑥,𝑦   𝑥,𝑆,𝑦   𝑥,𝑉,𝑦
Allowed substitution hints:   𝐾(𝑥,𝑦)   0 (𝑥,𝑦)   𝑍(𝑥,𝑦)

Proof of Theorem dmdprdd
StepHypRef Expression
1 dmdprdd.1 . 2 (𝜑𝐺 ∈ Grp)
2 dmdprdd.3 . 2 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
3 eldifsn 4462 . . . . . . 7 (𝑦 ∈ (𝐼 ∖ {𝑥}) ↔ (𝑦𝐼𝑦𝑥))
4 necom 2985 . . . . . . . 8 (𝑦𝑥𝑥𝑦)
54anbi2i 732 . . . . . . 7 ((𝑦𝐼𝑦𝑥) ↔ (𝑦𝐼𝑥𝑦))
63, 5bitri 264 . . . . . 6 (𝑦 ∈ (𝐼 ∖ {𝑥}) ↔ (𝑦𝐼𝑥𝑦))
7 dmdprdd.4 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → (𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)))
873exp2 1448 . . . . . . 7 (𝜑 → (𝑥𝐼 → (𝑦𝐼 → (𝑥𝑦 → (𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦))))))
98imp4b 614 . . . . . 6 ((𝜑𝑥𝐼) → ((𝑦𝐼𝑥𝑦) → (𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦))))
106, 9syl5bi 232 . . . . 5 ((𝜑𝑥𝐼) → (𝑦 ∈ (𝐼 ∖ {𝑥}) → (𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦))))
1110ralrimiv 3103 . . . 4 ((𝜑𝑥𝐼) → ∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)))
12 dmdprdd.5 . . . . 5 ((𝜑𝑥𝐼) → ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 })
132ffvelrnda 6522 . . . . . . . 8 ((𝜑𝑥𝐼) → (𝑆𝑥) ∈ (SubGrp‘𝐺))
14 dmdprd.0 . . . . . . . . 9 0 = (0g𝐺)
1514subg0cl 17803 . . . . . . . 8 ((𝑆𝑥) ∈ (SubGrp‘𝐺) → 0 ∈ (𝑆𝑥))
1613, 15syl 17 . . . . . . 7 ((𝜑𝑥𝐼) → 0 ∈ (𝑆𝑥))
171adantr 472 . . . . . . . . . 10 ((𝜑𝑥𝐼) → 𝐺 ∈ Grp)
18 eqid 2760 . . . . . . . . . . 11 (Base‘𝐺) = (Base‘𝐺)
1918subgacs 17830 . . . . . . . . . 10 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)))
20 acsmre 16514 . . . . . . . . . 10 ((SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
2117, 19, 203syl 18 . . . . . . . . 9 ((𝜑𝑥𝐼) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
22 imassrn 5635 . . . . . . . . . . . 12 (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ ran 𝑆
23 frn 6214 . . . . . . . . . . . . . 14 (𝑆:𝐼⟶(SubGrp‘𝐺) → ran 𝑆 ⊆ (SubGrp‘𝐺))
242, 23syl 17 . . . . . . . . . . . . 13 (𝜑 → ran 𝑆 ⊆ (SubGrp‘𝐺))
2524adantr 472 . . . . . . . . . . . 12 ((𝜑𝑥𝐼) → ran 𝑆 ⊆ (SubGrp‘𝐺))
2622, 25syl5ss 3755 . . . . . . . . . . 11 ((𝜑𝑥𝐼) → (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ (SubGrp‘𝐺))
27 mresspw 16454 . . . . . . . . . . . 12 ((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺))
2821, 27syl 17 . . . . . . . . . . 11 ((𝜑𝑥𝐼) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺))
2926, 28sstrd 3754 . . . . . . . . . 10 ((𝜑𝑥𝐼) → (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ 𝒫 (Base‘𝐺))
30 sspwuni 4763 . . . . . . . . . 10 ((𝑆 “ (𝐼 ∖ {𝑥})) ⊆ 𝒫 (Base‘𝐺) ↔ (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ (Base‘𝐺))
3129, 30sylib 208 . . . . . . . . 9 ((𝜑𝑥𝐼) → (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ (Base‘𝐺))
32 dmdprd.k . . . . . . . . . 10 𝐾 = (mrCls‘(SubGrp‘𝐺))
3332mrccl 16473 . . . . . . . . 9 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ (Base‘𝐺)) → (𝐾 (𝑆 “ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺))
3421, 31, 33syl2anc 696 . . . . . . . 8 ((𝜑𝑥𝐼) → (𝐾 (𝑆 “ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺))
3514subg0cl 17803 . . . . . . . 8 ((𝐾 (𝑆 “ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺) → 0 ∈ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥}))))
3634, 35syl 17 . . . . . . 7 ((𝜑𝑥𝐼) → 0 ∈ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥}))))
3716, 36elind 3941 . . . . . 6 ((𝜑𝑥𝐼) → 0 ∈ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))))
3837snssd 4485 . . . . 5 ((𝜑𝑥𝐼) → { 0 } ⊆ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))))
3912, 38eqssd 3761 . . . 4 ((𝜑𝑥𝐼) → ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })
4011, 39jca 555 . . 3 ((𝜑𝑥𝐼) → (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))
4140ralrimiva 3104 . 2 (𝜑 → ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))
42 dmdprdd.2 . . 3 (𝜑𝐼𝑉)
43 fdm 6212 . . . 4 (𝑆:𝐼⟶(SubGrp‘𝐺) → dom 𝑆 = 𝐼)
442, 43syl 17 . . 3 (𝜑 → dom 𝑆 = 𝐼)
45 dmdprd.z . . . 4 𝑍 = (Cntz‘𝐺)
4645, 14, 32dmdprd 18597 . . 3 ((𝐼𝑉 ∧ dom 𝑆 = 𝐼) → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))))
4742, 44, 46syl2anc 696 . 2 (𝜑 → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))))
481, 2, 41, 47mpbir3and 1428 1 (𝜑𝐺dom DProd 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wne 2932  wral 3050  cdif 3712  cin 3714  wss 3715  𝒫 cpw 4302  {csn 4321   cuni 4588   class class class wbr 4804  dom cdm 5266  ran crn 5267  cima 5269  wf 6045  cfv 6049  Basecbs 16059  0gc0g 16302  Moorecmre 16444  mrClscmrc 16445  ACScacs 16447  Grpcgrp 17623  SubGrpcsubg 17789  Cntzccntz 17948   DProd cdprd 18592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-ixp 8075  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-2 11271  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-0g 16304  df-mre 16448  df-mrc 16449  df-acs 16451  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-submnd 17537  df-grp 17626  df-minusg 17627  df-subg 17792  df-dprd 18594
This theorem is referenced by:  dprdss  18628  dprdz  18629  dprdf1o  18631  dprdsn  18635  dprd2da  18641  dmdprdsplit2  18645  ablfac1b  18669
  Copyright terms: Public domain W3C validator