HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  dmdbr Structured version   Visualization version   GIF version

Theorem dmdbr 29498
Description: Binary relation expressing the dual modular pair property. (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.)
Assertion
Ref Expression
dmdbr ((𝐴C𝐵C ) → (𝐴 𝑀* 𝐵 ↔ ∀𝑥C (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵)))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem dmdbr
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2838 . . . . 5 (𝑦 = 𝐴 → (𝑦C𝐴C ))
21anbi1d 615 . . . 4 (𝑦 = 𝐴 → ((𝑦C𝑧C ) ↔ (𝐴C𝑧C )))
3 ineq2 3959 . . . . . . . 8 (𝑦 = 𝐴 → (𝑥𝑦) = (𝑥𝐴))
43oveq1d 6808 . . . . . . 7 (𝑦 = 𝐴 → ((𝑥𝑦) ∨ 𝑧) = ((𝑥𝐴) ∨ 𝑧))
5 oveq1 6800 . . . . . . . 8 (𝑦 = 𝐴 → (𝑦 𝑧) = (𝐴 𝑧))
65ineq2d 3965 . . . . . . 7 (𝑦 = 𝐴 → (𝑥 ∩ (𝑦 𝑧)) = (𝑥 ∩ (𝐴 𝑧)))
74, 6eqeq12d 2786 . . . . . 6 (𝑦 = 𝐴 → (((𝑥𝑦) ∨ 𝑧) = (𝑥 ∩ (𝑦 𝑧)) ↔ ((𝑥𝐴) ∨ 𝑧) = (𝑥 ∩ (𝐴 𝑧))))
87imbi2d 329 . . . . 5 (𝑦 = 𝐴 → ((𝑧𝑥 → ((𝑥𝑦) ∨ 𝑧) = (𝑥 ∩ (𝑦 𝑧))) ↔ (𝑧𝑥 → ((𝑥𝐴) ∨ 𝑧) = (𝑥 ∩ (𝐴 𝑧)))))
98ralbidv 3135 . . . 4 (𝑦 = 𝐴 → (∀𝑥C (𝑧𝑥 → ((𝑥𝑦) ∨ 𝑧) = (𝑥 ∩ (𝑦 𝑧))) ↔ ∀𝑥C (𝑧𝑥 → ((𝑥𝐴) ∨ 𝑧) = (𝑥 ∩ (𝐴 𝑧)))))
102, 9anbi12d 616 . . 3 (𝑦 = 𝐴 → (((𝑦C𝑧C ) ∧ ∀𝑥C (𝑧𝑥 → ((𝑥𝑦) ∨ 𝑧) = (𝑥 ∩ (𝑦 𝑧)))) ↔ ((𝐴C𝑧C ) ∧ ∀𝑥C (𝑧𝑥 → ((𝑥𝐴) ∨ 𝑧) = (𝑥 ∩ (𝐴 𝑧))))))
11 eleq1 2838 . . . . 5 (𝑧 = 𝐵 → (𝑧C𝐵C ))
1211anbi2d 614 . . . 4 (𝑧 = 𝐵 → ((𝐴C𝑧C ) ↔ (𝐴C𝐵C )))
13 sseq1 3775 . . . . . 6 (𝑧 = 𝐵 → (𝑧𝑥𝐵𝑥))
14 oveq2 6801 . . . . . . 7 (𝑧 = 𝐵 → ((𝑥𝐴) ∨ 𝑧) = ((𝑥𝐴) ∨ 𝐵))
15 oveq2 6801 . . . . . . . 8 (𝑧 = 𝐵 → (𝐴 𝑧) = (𝐴 𝐵))
1615ineq2d 3965 . . . . . . 7 (𝑧 = 𝐵 → (𝑥 ∩ (𝐴 𝑧)) = (𝑥 ∩ (𝐴 𝐵)))
1714, 16eqeq12d 2786 . . . . . 6 (𝑧 = 𝐵 → (((𝑥𝐴) ∨ 𝑧) = (𝑥 ∩ (𝐴 𝑧)) ↔ ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))))
1813, 17imbi12d 333 . . . . 5 (𝑧 = 𝐵 → ((𝑧𝑥 → ((𝑥𝐴) ∨ 𝑧) = (𝑥 ∩ (𝐴 𝑧))) ↔ (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵)))))
1918ralbidv 3135 . . . 4 (𝑧 = 𝐵 → (∀𝑥C (𝑧𝑥 → ((𝑥𝐴) ∨ 𝑧) = (𝑥 ∩ (𝐴 𝑧))) ↔ ∀𝑥C (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵)))))
2012, 19anbi12d 616 . . 3 (𝑧 = 𝐵 → (((𝐴C𝑧C ) ∧ ∀𝑥C (𝑧𝑥 → ((𝑥𝐴) ∨ 𝑧) = (𝑥 ∩ (𝐴 𝑧)))) ↔ ((𝐴C𝐵C ) ∧ ∀𝑥C (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))))))
21 df-dmd 29480 . . 3 𝑀* = {⟨𝑦, 𝑧⟩ ∣ ((𝑦C𝑧C ) ∧ ∀𝑥C (𝑧𝑥 → ((𝑥𝑦) ∨ 𝑧) = (𝑥 ∩ (𝑦 𝑧))))}
2210, 20, 21brabg 5127 . 2 ((𝐴C𝐵C ) → (𝐴 𝑀* 𝐵 ↔ ((𝐴C𝐵C ) ∧ ∀𝑥C (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))))))
2322bianabs 531 1 ((𝐴C𝐵C ) → (𝐴 𝑀* 𝐵 ↔ ∀𝑥C (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wral 3061  cin 3722  wss 3723   class class class wbr 4786  (class class class)co 6793   C cch 28126   chj 28130   𝑀* cdmd 28164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pr 5034
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-iota 5994  df-fv 6039  df-ov 6796  df-dmd 29480
This theorem is referenced by:  dmdmd  29499  dmdi  29501  dmdbr2  29502  dmdbr3  29504  mddmd2  29508
  Copyright terms: Public domain W3C validator