![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmct | Structured version Visualization version GIF version |
Description: The domain of a countable set is countable. (Contributed by Thierry Arnoux, 29-Dec-2016.) |
Ref | Expression |
---|---|
dmct | ⊢ (𝐴 ≼ ω → dom 𝐴 ≼ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmresv 5703 | . 2 ⊢ dom (𝐴 ↾ V) = dom 𝐴 | |
2 | resss 5532 | . . . . 5 ⊢ (𝐴 ↾ V) ⊆ 𝐴 | |
3 | ctex 8087 | . . . . 5 ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) | |
4 | ssexg 4912 | . . . . 5 ⊢ (((𝐴 ↾ V) ⊆ 𝐴 ∧ 𝐴 ∈ V) → (𝐴 ↾ V) ∈ V) | |
5 | 2, 3, 4 | sylancr 698 | . . . 4 ⊢ (𝐴 ≼ ω → (𝐴 ↾ V) ∈ V) |
6 | fvex 6314 | . . . . . . 7 ⊢ (1st ‘𝑥) ∈ V | |
7 | eqid 2724 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)) = (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)) | |
8 | 6, 7 | fnmpti 6135 | . . . . . 6 ⊢ (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)) Fn (𝐴 ↾ V) |
9 | dffn4 6234 | . . . . . 6 ⊢ ((𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)) Fn (𝐴 ↾ V) ↔ (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)):(𝐴 ↾ V)–onto→ran (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥))) | |
10 | 8, 9 | mpbi 220 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)):(𝐴 ↾ V)–onto→ran (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)) |
11 | relres 5536 | . . . . . 6 ⊢ Rel (𝐴 ↾ V) | |
12 | reldm 7338 | . . . . . 6 ⊢ (Rel (𝐴 ↾ V) → dom (𝐴 ↾ V) = ran (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥))) | |
13 | foeq3 6226 | . . . . . 6 ⊢ (dom (𝐴 ↾ V) = ran (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)) → ((𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)):(𝐴 ↾ V)–onto→dom (𝐴 ↾ V) ↔ (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)):(𝐴 ↾ V)–onto→ran (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)))) | |
14 | 11, 12, 13 | mp2b 10 | . . . . 5 ⊢ ((𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)):(𝐴 ↾ V)–onto→dom (𝐴 ↾ V) ↔ (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)):(𝐴 ↾ V)–onto→ran (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥))) |
15 | 10, 14 | mpbir 221 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)):(𝐴 ↾ V)–onto→dom (𝐴 ↾ V) |
16 | fodomg 9458 | . . . 4 ⊢ ((𝐴 ↾ V) ∈ V → ((𝑥 ∈ (𝐴 ↾ V) ↦ (1st ‘𝑥)):(𝐴 ↾ V)–onto→dom (𝐴 ↾ V) → dom (𝐴 ↾ V) ≼ (𝐴 ↾ V))) | |
17 | 5, 15, 16 | mpisyl 21 | . . 3 ⊢ (𝐴 ≼ ω → dom (𝐴 ↾ V) ≼ (𝐴 ↾ V)) |
18 | ssdomg 8118 | . . . . 5 ⊢ (𝐴 ∈ V → ((𝐴 ↾ V) ⊆ 𝐴 → (𝐴 ↾ V) ≼ 𝐴)) | |
19 | 3, 2, 18 | mpisyl 21 | . . . 4 ⊢ (𝐴 ≼ ω → (𝐴 ↾ V) ≼ 𝐴) |
20 | domtr 8125 | . . . 4 ⊢ (((𝐴 ↾ V) ≼ 𝐴 ∧ 𝐴 ≼ ω) → (𝐴 ↾ V) ≼ ω) | |
21 | 19, 20 | mpancom 706 | . . 3 ⊢ (𝐴 ≼ ω → (𝐴 ↾ V) ≼ ω) |
22 | domtr 8125 | . . 3 ⊢ ((dom (𝐴 ↾ V) ≼ (𝐴 ↾ V) ∧ (𝐴 ↾ V) ≼ ω) → dom (𝐴 ↾ V) ≼ ω) | |
23 | 17, 21, 22 | syl2anc 696 | . 2 ⊢ (𝐴 ≼ ω → dom (𝐴 ↾ V) ≼ ω) |
24 | 1, 23 | syl5eqbrr 4796 | 1 ⊢ (𝐴 ≼ ω → dom 𝐴 ≼ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1596 ∈ wcel 2103 Vcvv 3304 ⊆ wss 3680 class class class wbr 4760 ↦ cmpt 4837 dom cdm 5218 ran crn 5219 ↾ cres 5220 Rel wrel 5223 Fn wfn 5996 –onto→wfo 5999 ‘cfv 6001 ωcom 7182 1st c1st 7283 ≼ cdom 8070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-rep 4879 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 ax-ac2 9398 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-ral 3019 df-rex 3020 df-reu 3021 df-rmo 3022 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-pss 3696 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-tp 4290 df-op 4292 df-uni 4545 df-int 4584 df-iun 4630 df-br 4761 df-opab 4821 df-mpt 4838 df-tr 4861 df-id 5128 df-eprel 5133 df-po 5139 df-so 5140 df-fr 5177 df-se 5178 df-we 5179 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-pred 5793 df-ord 5839 df-on 5840 df-suc 5842 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-isom 6010 df-riota 6726 df-ov 6768 df-oprab 6769 df-mpt2 6770 df-1st 7285 df-2nd 7286 df-wrecs 7527 df-recs 7588 df-er 7862 df-map 7976 df-en 8073 df-dom 8074 df-card 8878 df-acn 8881 df-ac 9052 |
This theorem is referenced by: rnct 9460 |
Copyright terms: Public domain | W3C validator |